Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T03:05:05.942Z Has data issue: false hasContentIssue false

Assessment of Geometrical and Transport Properties of a Fibrous C/C Composite Preform Using x-ray Computerized Micro-tomography: Part I. Image Acquisition and Geometrical Properties

Published online by Cambridge University Press:  03 March 2011

Olivia Coindreau
Affiliation:
Laboratoire des Composites ThermoStructuraux (LCTS) UMR 5801 CNRS-Université Bordeaux 1—CEA—Snecma, Université Bordeaux 1, F 33600 Pessac, France
Gérard L. Vignoles*
Affiliation:
Laboratoire des Composites ThermoStructuraux (LCTS) UMR 5801 CNRS-Université Bordeaux 1—CEA—Snecma, Université Bordeaux 1, F 33600 Pessac, France
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Raw and partially infiltrated carbon–carbon composite preforms have been scanned by high-resolution synchrotron radiation x-ray computerized micro-tomography. Three dimensional high-quality images of the pore space have been produced at two distinct resolutions and have been used for the computation of geometrical quantities: porosity, internal surface area, pore sizes, and their distributions, as well as local and average fiber directions. Determination of the latter property makes use of an original algorithm. All quantities have been compared to experimental data with good results. Structural models appropriate for ideal families of cylinders are shown to represent adequately the actual pore space.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Naslain, R. and Langlais, F.: Fundamental and practical aspects of the chemical vapor infiltration of porous substrates. High Temp. Sci. 27, 221 (1990).Google Scholar
2Starr, T.L.: Modeling of forced flow-thermal gradient CVI, in Proceedings of International Conference on Whisker and Fiber-Thoughened Ceramics, edited by Bradley, R.A., Clark, D.E., Larsen, D.S., and Stiegler, J.Q. (ASM International, Metals Park, OH, 1988), p. 243.Google Scholar
3McAllister, P. and Wolf, E.E.: Simulation of a multiple substrate reactor for chemical vapor infiltration of pyrolytic carbon within carbon-carbon composites. AIChE J. 39, 1196 (1993).CrossRefGoogle Scholar
4Vignoles, G.L., Descamps, C. and Reuge, N. Interaction between a reactive preform and the surrounding gas-phase during CVI, in Euro-CVD 12 Proceedings, edited by Figueras, A. (J. Phys. IV France 10, EDP Sciences, Les Ulis, France, 2000), p. Pr2-9.Google Scholar
5Reuge, N. and Vignoles, G.L.: Global modelling of I-CVI: Effects of reactor control parameters on a densification. J. Mater. Proc. Technol. (2004, in press).Google Scholar
6Leutard, D., Vignoles, G.L., Lamouroux, F. and Bernard, B.: Monitoring density and temperature in C/C composites elaborated by CVI with radio-frequency heating. J. Mater. Synth. Process. 9, 259 (2002).Google Scholar
7Tomadakis, M.M. and Sotirchos, S.V.: Knudsen diffusivities and properties of structures of unidirectional fibers. AIChE J. 37, 1175 (1991).Google Scholar
8Starr, T.L. and Smith, A.W. Advances in modeling of the forced chemical vapor infiltration process, in Chemical Vapor Deposition of Refractory Metals and Ceramics II, edited by Besmann, T.M., Gallois, B.M., and Warren, J.W., (Mater. Res. Soc. Symp. Proc. 250, Pittsburgh, PA, 1992). p. 207.Google Scholar
9Tomadakis, M.M. and Sotirchos, S.V.: Transport properties of random arrays of freely overlapping cylinders with various orientation distributions. J. Chem. Phys. 98, 616 (1993).Google Scholar
10Ofori, J.Y. and Sotirchos, S.V.: Structural model effects on the predictions of CVI models. J. Electrochem. Soc. 143, 1962 (1996).Google Scholar
11Rikvold, P.A. and Stell, G.: d -dimensional interpenetrable-sphere models of random two-phase media: Microstructure and an application to chromatogaphy. J. Colloid Interface Sci. 108, 158 (1985).Google Scholar
12Tomadakis, M.M. and Sotirchos, S.V.: Effective Knudsen diffusivities in structures of randomly overlapping fibers. AIChE J. 37, 74 (1991).CrossRefGoogle Scholar
13Perrins, W.T., McKenzie, D.R. and McPhedran, R.C.: Transport properties of regular arrays of cylinders. Proc. R. Soc. London A 369, 207 (1979).Google Scholar
14Milton, G.W.: Bounds on the transport and optical properties of a two-component composite material. J. Appl. Phys. 52, 5294 (1981).Google Scholar
15Tsai, D.S. and Strieder, W.: Effective conductivities of random fiber beds. Chem. Eng. Commun. 40, 207 (1986).CrossRefGoogle Scholar
16McCarthy, J.F.: Effective conductivity of many component composites by a random walk method. J. Phys. A: Math. Gen. 23, L445 (1990).CrossRefGoogle Scholar
17Kim, I.C. and Torquato, S.: Determination of the effective conductivity of heterogeneous media by brownian motion simulation. J. Appl. Phys. 68, 3892 (1990).Google Scholar
18Tomadakis, M.M. and Sotirchos, S.V.: Transport through random arrays of conductive cylinders dispersed in a conductive matrix. J. Chem. Phys. 104, 6893 (1996).Google Scholar
19Torquato, S. and Beasley, J.D.: Effective properties of fiber-reinforced materials: I. Bounds of the effective thermal conductivity of dispersions of fully penetrable cylinders. Int. J. Eng. Sci. 24, 415 (1986).CrossRefGoogle Scholar
20Joslin, C.G. and Stell, G.: Effective properties of fiber-reinforced composites: Effects of polydispersity in fiber diameter. J. Appl. Phys. 60, 1611 (1986).Google Scholar
21Melkote, R.R. and Jensen, K.F.: Computation of transition and molecular diffusivities in fibrous media. AIChE J. 38, 56 (1992).Google Scholar
22Tomadakis, M.M. and Sotirchos, S.V.: Ordinary and transition regime diffusion in random fiber structures. AIChE J. 39, 397 (1993).Google Scholar
23Ho, F.G. and Strieder, W.: Asymptotic expansions of the porous medium effective diffusivity coefficient in the Knudsen number. J. Chem. Phys. 70, 5635 (1979).Google Scholar
24Faley, T.L. and Strieder, W.: Knudsen flow through a random bed of unidirectional fibers. J. Appl. Phys. 62, 4394 (1987).CrossRefGoogle Scholar
25Melkote, R.R. and Jensen, K.F.: Gas diffusion in random fiber structures. AIChE J. 35, 1942 (1989).Google Scholar
26Sangani, A.S. and Acrivos, A.: Slow flow past periodic arrays of cylinders with application to heat transfer. Int. J. Multiphase Flow 8, 193 (1982).Google Scholar
27McCarthy, J.F.: Analytical models for the effective permeability of sand-shale resevoirs. Geophys. Int. J. 105, 513 (1991).CrossRefGoogle Scholar
28Kak, A.C. and Slaney, M. Principles of computerized tomographic imaging, in Classics in Applied Math. 33, (Electronic version, SIAM, 2001).Google Scholar
29Baruchel, J., Buffière, J-Y., Maire, E., Merle, P. and Peix, G.: X-ray Tomography in Material Science (Hermès Science Publications, Paris, France, 2000).Google Scholar
30Baaklini, G.Y., Bhatt, R.T., Eckel, A.J., Engler, P., Castelli, M.G. and Rauser, R.W.: X-ray microtomography of ceramic and metal matrix composites. Mater. Eval. 53, 1040 (1995).Google Scholar
31Kim, J., Liaw, P.K., Hsu, D.K., and McGuire, D.J.: Nondestructive evaluation of Nicalon/SiC composites by ultrasonics and x-ray computed tomography, in Proc. 21st Annual Conference and Exposition on Composites, Advanced Ceramics, Materials and Structures, edited by Singh, J.P. (Ceram. Eng. Sci. Proc. 18, Westerville, OH, 1997), p. 287.Google Scholar
32Kinney, J.H., Breunig, T.M., Starr, T.L., Haupt, D., Nichols, M.C., Stock, S.R., Butts, M.D. and Saroyan, R.A.: X-ray tomographic study of chemical vapor infiltration processing of ceramic composites. Science 260, 789 (1993).Google Scholar
33Lee, S-B., Stock, S.R., Butts, M.D., Starr, T.L., Breunig, T.M. and Kinney, J.H.: Pore geometry in woven fiber structures: 0°/90° plain-weave cloth layup preform. J. Mater. Res. 13, 1209 (1998).Google Scholar
34Baruchel, J. Topography and high-resolution diffraction beamline ID 19, in ESRF Beamline Handbook, edited by Mason, R. (ESRF User Office, Grenoble, France, 1995), p. 115.Google Scholar
35Baruchel, J. and Härtwig, J.: ID 19 Topography and High-Resolution Diffraction Handbook. http://www.esrf.fr/exp facilities/ID19/handbook/handbook.html (2004).Google Scholar
36Labiche, J.C., Segura-Puchades, J., Van Brussel, D. and Moy, J.P.: FReLON camera: Fast readout low noise. ESRF Newsletter 25, 41 (1996).Google Scholar
37And, M. and Hosoya, S.: An attempt at x-ray phase-contrast microscopy, in Proc. 6th Intern. Conf. On X-ray Optics and Microanalysis, edited by Shinoda, G., Kohra, K., and Ichinokawa, T., (Univ. of Tokyo Press, Tokyo, Japan, 1972), p. 63.Google Scholar
38Cloetens, P., Pateyron-Salomé, M., Buffière, J-Y., Peix, G., Baruchel, J., Peyrin, F. and Schlenker, M.: Observation of microstructure and damage in materials by phase sensitive radiography and tomography. J. Appl. Phys. 81, 5878 (1997).CrossRefGoogle Scholar
39Maire, E., Buffière, J-Y., Cloetens, P., Lormand, G. and Fougères, R.: Characterization of internal damage in an MMCp using x-ray synchrotron phase contrast microtomography. Acta Mater. 47, 1613 (1999).Google Scholar
40Vignoles, G.L.: Image segmentation for hard x-ray phase contrast images of C/C composites. Carbon 39, 167 (2001).CrossRefGoogle Scholar
41Lorensen, W.E. and Cline, H.E. Marching cubes: A high resolution 3D surface construction algorithm, in SIGGRAPH ’87 Proceedings, edited by Stone, M.C. (ACM Computer Graphics 21, ACM Press, New York, NY, 1987), p. 163.Google Scholar
42Vignoles, G.L.: Modelling binary, Knudsen, and transition regime diffusion inside complex porous media. J. Phys. IV C5, 159 (1995).Google Scholar
43Lyvers, E.P. and Mitchell, O.R.: Precise edge contrast and orientation estimation. IEEE Trans. Pattern Anal. Mach. Intell. 10, 927 (1988).Google Scholar
44Germain, C., Costa, J.P. Da, Lavialle, O. and Baylou, P.: Multiscale estimation of vector field anisotropy application to texture characterization. Signal Process. 83, 1487 (2003).Google Scholar
45Bigün, J., Granlund, G.H. and Wiklund, J.: Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 13, 775 (1991).CrossRefGoogle Scholar
46Burganos, V.N. and Sotirchos, S.V.: Knudsen diffusion in parallel, multidimensional, or randomly oriented pore structures. Chem. Eng. Sci. 44, 2451 (1989).Google Scholar
47Rikvold, P.A. and Stell, G.: Porosity and specific surface for interpenetrable-sphere models of two-phase random media. J. Chem. Phys. 31, 1014 (1985).Google Scholar
48Satterfield, C.N. Mass transfer in heterogenous catalysis, Technical Report MA-41 (MIT Press, Cambridge, MA, 1970).Google Scholar
49Jonard, M. Study of the pore network of tridimensional textures, Technical report, (Snecma Propulsion Solide, Le Haillan, France, 2001) (in French).Google Scholar