Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-19T10:57:59.299Z Has data issue: false hasContentIssue false

Annealing-induced crystalline structure and mechanical property changes of polypropylene random copolymer

Published online by Cambridge University Press:  19 November 2013

Jing-wei Chen
Affiliation:
Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
Jian Dai
Affiliation:
Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
Jing-hui Yang
Affiliation:
Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
Ting Huang
Affiliation:
Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
Nan Zhang
Affiliation:
Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
Yong Wang*
Affiliation:
Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this work, the effects of annealing treatment on the crystalline structure and mechanical property changes of polypropylene random copolymer (PPR) were comparatively investigated. Wide angle x-ray diffraction and differential scanning calorimetry were used to study the crystalline structure evolution of the annealed PPR sample. The relaxation behavior of the annealed PPR sample was analyzed using dynamic mechanical analysis. The mechanical properties and the toughening mechanism were also investigated. The results showed that the crystalline structure evolution of the annealed PPR sample depended on the annealing temperature. Due to the largely increased molecular chain mobility in the amorphous region, which promoted the plastic deformation of the annealed PPR sample under the impact condition, largely enhanced impact strength was achieved at a moderate annealing temperature. Further results showed that relatively shorter annealing duration could induce the apparent changes of crystalline structure and mechanical properties of the PPR sample.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Maiti, P., Hikosaka, M., Yamada, K., Toda, A., and Gu, F.: Lamellar thickening in isotactic polypropylene with high tacticity crystallized at high temperature. Macromolecules 33, 9069 (2000).CrossRefGoogle Scholar
Drozdov, A.D. and deClaville Christiansen, J.: The effect of annealing on the time-dependent behavior of isotactic polypropylene at finite strains. Polymer 43, 4745 (2002).CrossRefGoogle Scholar
Zhao, J., Qiu, J., Niu, Y., and Wang, Z.: Evolutions of morphology and crystalline ordering upon annealing of quenched isotactic polypropylene. J. Polym. Sci. Polym. Phys. 47, 1703 (2009).CrossRefGoogle Scholar
Hedesiu, C., Demco, D., Kleppinger, R., Poel, G.V., Gijsbers, W., Blümich, B., Remerie, K., and Litvinov, V.: Effect of temperature and annealing on the phase composition, molecular mobility, and the thickness of domains in isotactic polypropylene studied by proton solid-state NMR, SAXS, and DSC. Macromolecules 40, 3977 (2007).CrossRefGoogle Scholar
Wu, H., Li, X., Chen, J., Shao, L., Huang, T., Shi, Y., and Wang, Y.: Reinforcement and toughening of polypropylene/organic montmorillonite nanocomposite using β-nucleating agent and annealing. Composites Part B: Eng. 44, 439 (2013).CrossRefGoogle Scholar
Han, L., Li, X., Li, Y., Huang, T., Wang, Y., Wu, J., and Xiang, F.: Influence of annealing on microstructure and physical properties of isotactic polypropylene/calcium carbonate composites with β-phase nucleating agent. Mater. Sci. Eng., A 527, 3176 (2010).CrossRefGoogle Scholar
Ferrer-Balas, D., Maspoch, M.L., Martinez, A., and Santana, O.: Influence of annealing on the microstructural, tensile and fracture properties of polypropylene films. Polymer 42, 1697 (2001).CrossRefGoogle Scholar
Song, S., Feng, J., and Wu, P.: Annealing of melt-crystallized polyethylene and its influence on microstructure and mechanical properties: A comparative study on branched and linear polyethylenes. J. Polym. Sci. Polym. Phys. 49, 1347 (2011).CrossRefGoogle Scholar
Wu, H., Li, X., Xiang, F., Huang, T., Shi, Y., and Wang, Y.: Microstructure evolution of isotactic polypropylene during annealing: Effect of poly(ethylene oxide). Chin. J. Polym. Sci. 30, 199 (2012).CrossRefGoogle Scholar
De Rosa, C., Ruiz de Ballesteros, O., Auriemma, F., and Savarese, R.: Polymorphic transitions induced by annealing in stretched fibers of syndiotactic polypropylene. Macromolecules 38, 4791 (2005).CrossRefGoogle Scholar
Song, S., Feng, J., and Wu, P.: Relaxation of shear-enhanced crystallization in impact-resistant polypropylene copolymer: Insight from morphological evolution upon thermal treatment. Polymer 51, 5267 (2010).CrossRefGoogle Scholar
Bai, H., Luo, F., Zhou, T., Deng, H., Wang, K., and Fu, Q.: New insight on the annealing induced microstructural changes and their roles in the toughening of β-form polypropylene. Polymer 52, 2351 (2011).CrossRefGoogle Scholar
Chen, J.W., Dai, J., Yang, J.H., Zhang, N., Huang, T., and Wang, Y.: Enhancing chain segments mobility to improve the fracture toughness of polypropylene. Chin. J. Polym. Sci. 31, 232 (2013).CrossRefGoogle Scholar
Wu, H., Li, X., Wang, Y., Wu, J., Huang, T., and Wang, Y.: Fracture behaviors of isotactic polypropylene/poly(ethylene oxide) blends: Effect of annealing. Mater. Sci. Eng., A 528, 8013 (2011).CrossRefGoogle Scholar
Lin, Y., Chen, H., Chan, C.M., and Wu, J.: High impact toughness polypropylene/CaCO3 nanocomposites and the toughening mechanism. Macromolecules 41, 9204 (2008).CrossRefGoogle Scholar
Lin, Y., Chen, H., Chan, C.M., and Wu, J.: Annealing-induced high impact toughness of polypropylene/CaCO3 nanocomposites. J. Appl. Polym. Sci. 124, 77 (2012).CrossRefGoogle Scholar
Na, B., Li, Z., Lv, R., and Zou, S.: Annealing-induced structural rearrangement and its toughening effect in injection-molded isotactic polypropylene. Polym. Eng. Sci. 52, 893 (2012).CrossRefGoogle Scholar
Li, Q.G., Xie, B.H., Yang, W., Li, Z.M., Zhang, W.Q., and Yang, M.B.: Effect of annealing on fracture behavior of poly(propylene-block-ethylene) using essential work of fracture analysis. J. Appl. Polym. Sci. 103, 3438 (2007).CrossRefGoogle Scholar
Bai, H., Wang, Y., Zhang, Z., Han, L., Li, Y., Liu, L., Zhou, Z., and Men, Y.: Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-phase nucleating agent. Macromolecules 42, 6647 (2009).CrossRefGoogle Scholar
Drozdov, A.D.: The effect of annealing on the elastoplastic response of isotactic polypropylene. Eur. Polym. J. 39, 21 (2003).CrossRefGoogle Scholar
Drozdov, A.D. and Christiansen, J.D.: The effect of annealing on the nonlinear viscoelastic response of isotactic polypropylene. Polym. Eng. Sci. 43, 946 (2003).CrossRefGoogle Scholar
Frontini, P. and Fave, A.: The effect of annealing temperature on the fracture performance of isotactic polypropylene. J. Mater. Sci. 30, 2446 (1995).CrossRefGoogle Scholar
Li, X., Wu, H., Han, L., Huang, T., Wang, Y., Bai, H., and Zhou, Z.: Annealing induced microstructure and fracture resistance changes in isotactic polypropylene/ethylene-octene copolymer blends with and without β-phase nucleating agent. J. Polym. Sci. Polym. Phys. 48, 2108 (2010).CrossRefGoogle Scholar
Tang, J., Tang, W., Yuan, H., and Jin, R.: Super-toughed polymer blends derived from polypropylene random copolymer and ethylene/styrene interpolymer. J. Appl. Polym. Sci. 115, 190 (2010).CrossRefGoogle Scholar
Palza, H., López-Majada, J.M., Quijada, R., Pereña, J.M., Benaventa, R., Pérez, E., and Cerrada, M.L.: Comonomer length influence on the structure and mechanical response of metallocenic polypropyleneic materials. Macromol. Chem. Phys. 209, 2259 (2008).CrossRefGoogle Scholar
De Rosa, C., Dello Iacono, S., Auriemma, F., Ciaccia, E., and Resconi, L.: Physical aging of single wall carbon nanotube polymer nanocomposites: Effect of functionalization of the nanotube on the enthalpy relaxation. Macromolecules 39, 6098 (2006).CrossRefGoogle Scholar
De Rosa, C., Auriemma, F., Ballesteros, O.R.D., Luca, D.D., and Resconi, L.: The double role of comonomers on the crystallization behavior of isotactic polypropylene: Propylene-hexene copolymers. Macromolecules 41, 2172 (2008).CrossRefGoogle Scholar
De Rosa, C., Auriemma, F., Ruiz de Ballesteros, O., Dello Iacono, S., De Luca, D., and Resconi, L.: Stress-induced polymorphic transformations and mechanical properties of isotactic propylene-hexene copolymers. Cryst. Growth Des. 9, 165 (2009).CrossRefGoogle Scholar
De Rosa, C., Auriemma, F., Di Girolamo, R., Romano, L., and De Luca, M.R.: New mesophase of isotactic polypropylene in copolymers of propylene with long branched comonomers. Macromolecules 43, 8559 (2010).CrossRefGoogle Scholar
Bu, H.S. and Cheng, S.Z.D., and Wunderlich, B.: Addendum to the thermal properties of polypropylene. Makromol. Chem. Rapid Commun. 9, 75 (1988).CrossRefGoogle Scholar
Morrow, D. and Newman, B.: Crystallization of low-molecular-weight polypropylene fractions. J. Appl. Phys. 39, 4944 (1968).CrossRefGoogle Scholar
Addink, E. and Beintema, J.: Polymorphism of crystalline polypropylene. Polymer 2, 185 (1961).CrossRefGoogle Scholar
Hosier, I., Alamo, R., Esteso, P., Isasi, J., and Mandelkern, L.: Formation of the α and γ polymorphs in random metallocene-propylene copolymers: Effect of concentration and type of comonomer. Macromolecules 36, 5623 (2003).CrossRefGoogle Scholar
De Rosa, C., Auriemma, F., Di Capua, A., Resconi, L., Guidotti, S., Camurati, I., Nifant’ev, I.E., and Laishevtsev, I.P.: Structure-property correlations in polypropylene from metallocene catalysts: Stereodefective, regioregular isotactic polypropylene. J. Am. Chem. Soc. 126, 17040 (2004).CrossRefGoogle ScholarPubMed
De Rosa, C. and Auriemma, F.: Structural-mechanical phase diagram of isotactic polypropylene. J. Am. Chem. Soc. 128, 11024 (2006).CrossRefGoogle ScholarPubMed
De Rosa, C., Auriemma, F., and Circelli, T.: Crystallization of the α and γ forms of isotactic polypropylene as a tool to test the degree of segregation of defects in the polymer chains. Macromolecules 35, 3622 (2002).CrossRefGoogle Scholar
Auriemma, F. and Rosa, C.D.: Crystallization of metallocene-made isotactic polypropylene: Disordered modifications intermediate between the α and γ forms. Macromolecules 35, 9057 (2002).CrossRefGoogle Scholar
De Rosa, C., Auriemma, F., Spera, C., Talarico, G., and Tarallo, O.: Comparison between polymorphic behaviors of Ziegler-Natta and metallocene-made isotactic polypropylene: The role of the distribution of defects in the polymer chains. Macromolecules 37, 1441 (2004).CrossRefGoogle Scholar
De Rosa, C., Auriemma, F., Ruiz de Ballesteros, O., Resconi, L., and Camurati, I.: Tailoring the physical properties of isotactic polypropylene through incorporation of comonomers and the precise control of stereo- and regioregularity by metallocene catalysts. Chem. Mater. 19, 5122 (2007).CrossRefGoogle Scholar
De Rosa, C., Auriemma, F., Ruiz de Ballesteros, O., Resconi, L., and Camurati, I.: Crystallization behavior of isotactic propylene–ethylene and propylene–butene copolymers: Effect of comonomers versus stereodefects on crystallization properties of isotactic polypropylene. Macromolecules 40, 6600 (2007).CrossRefGoogle Scholar
Turner-Jones, A.: Development of the γ-crystal form in random copolymers of propylene and their analysis by DSC and x-ray methods. Polymer 12, 487 (1971).CrossRefGoogle Scholar
Shi, Q., Cai, C.L., Ke, Z., Yin, L.G., Liu, Y.L., Zhu, L.C., and Yin, J.H.: Effect of the nucleating agent 1,3:2,4-di(3,4-dimethylbenzylidene) sorbitol on the γ-phase content of propylene/ethylene copolymer. Eur. Polym. J. 44, 2385 (2008).CrossRefGoogle Scholar
Zhao, Y., Vaughan, A., Sutton, S., and Swingler, S.: On the crystallization, morphology and physical properties of a clarified propylene/ethylene copolymer. Polymer 42, 6587 (2001).CrossRefGoogle Scholar
Xu, H. and Cebe, P.: Heat capacity study of isotactic polystyrene: Dual reversible crystal melting and relaxation of rigid amorphous fraction. Macromolecules 37, 2797 (2004).CrossRefGoogle Scholar
Lu, S.H. and Cebe, P.: The effects of annealing on the disappearance and creation of constrained amorphous phase. Polymer 37, 4857 (1996).Google Scholar
Song, M.: Rigid amorphous phase and low temperature melting endotherm of poly(ethylene terephthalate) studied by modulated differential scanning calorimetry. J. Appl. Polym. Sci. 81, 2779 (2001).CrossRefGoogle Scholar
Grein, C., Bernreitner, K., and Gahleitner, M.: Potential and limits of dynamic mechanical analysis as a tool for fracture resistance evaluation of isotactic polypropylenes and their polyolefin blends. J. Appl. Polym. Sci. 93, 1854 (2004).CrossRefGoogle Scholar