Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T12:45:33.792Z Has data issue: false hasContentIssue false

Anisotropic valence band dispersion of single crystal pentacene as measured by angle-resolved ultraviolet photoelectron spectroscopy

Published online by Cambridge University Press:  07 September 2018

Yasuo Nakayama*
Affiliation:
Department of Pure and Applied Chemistry, Tokyo University of Science, Noda 278-8510, Japan
Masataka Hikasa
Affiliation:
Department of Pure and Applied Chemistry, Tokyo University of Science, Noda 278-8510, Japan
Naoki Moriya
Affiliation:
Department of Pure and Applied Chemistry, Tokyo University of Science, Noda 278-8510, Japan
Matthias Meissner
Affiliation:
Institute for Molecular Science (IMS), National Institutes of Natural Sciences, and SOKENDAI, Okazaki 444-8585, Japan
Takuma Yamaguchi
Affiliation:
Institute for Molecular Science (IMS), National Institutes of Natural Sciences, and SOKENDAI, Okazaki 444-8585, Japan
Koki Yoshida
Affiliation:
Department of Pure and Applied Chemistry, Tokyo University of Science, Noda 278-8510, Japan
Mimi Murata
Affiliation:
Department of Pure and Applied Chemistry, Tokyo University of Science, Noda 278-8510, Japan
Kazuhiko Mase
Affiliation:
Institute for Materials Structure Science, High Energy Accelerator Research Organization (KEK), and SOKENDAI, Tsukuba 305-0801, Japan
Takahiro Ueba
Affiliation:
Institute for Molecular Science (IMS), National Institutes of Natural Sciences, and SOKENDAI, Okazaki 444-8585, Japan
Satoshi Kera
Affiliation:
Institute for Molecular Science (IMS), National Institutes of Natural Sciences, and SOKENDAI, Okazaki 444-8585, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Electronic structures of single crystal pentacene are of great interest for the elucidation of charge carrier transport in organic semiconductor materials. Experimental observation of valence band dispersion was recently achieved on single crystal samples of pentacene; however, its intrinsic properties are still unresolved because past experiments were performed on specimens with surface oxides formed by exposure to the ambient atmosphere. In this work, X-ray photoelectron spectroscopy (XPS) and angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) were conducted on single-crystal pentacene samples prepared without ambient exposure. The XPS results confirmed the reduction of the abundance of oxide impurities on the present samples. The ARUPS measurements clearly resolved the valence band structures of the single-crystal pentacene in four symmetry directions of the surface Brillouin zone, indicating anisotropy of at least a factor of 2.4 for the intermolecular transfer integral and hole effective mass at the valence band maximum.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lin, Y-Y., Gundlach, D.J., Nelson, S.F., and Jackson, T.N.: Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron Device Lett. 18, 606 (1997).CrossRefGoogle Scholar
Jurchescu, O.D., Baas, J., and Palstra, T.T.M.: Effect of impurities on the mobility of single crystal pentacene. Appl. Phys. Lett. 84, 3061 (2004).CrossRefGoogle Scholar
Cheng, Y.C., Silbey, R.J., da Silva Filho, D.A., Calbert, J.P., Cornil, J., and Brédas, J.L.: Three-dimensional band structure and bandlike mobility in oligoacene single crystals: A theoretical investigation. J. Chem. Phys. 118, 3764 (2003).CrossRefGoogle Scholar
de Wijs, G.A., Mattheus, C.C., de Groot, R.A., and Palstra, T.T.M.: Anisotropy of the mobility of pentacene from frustration. Synth. Met. 139, 109 (2003).CrossRefGoogle Scholar
Doi, K., Yoshida, K., Nakano, H., Tachibana, A., Tanabe, T., Kojima, Y., and Okazaki, K.: Ab initio calculation of electron effective masses in solid pentacene. J. Appl. Phys. 98, 113709 (2005).CrossRefGoogle Scholar
Hummer, K. and Ambrosch-Draxl, C.: Electronic properties of oligoacenes from first principles. Phys. Rev. B 72, 205205 (2005).CrossRefGoogle Scholar
Yoshida, H. and Sato, N.: Crystallographic and electronic structures of three different polymorphs of pentacene. Phys. Rev. B 77, 235205 (2008).CrossRefGoogle Scholar
Koch, N., Vollmer, A., Salzmann, I., Nickel, B., Weiss, H., and Rabe, J.: Evidence for temperature-dependent electron band dispersion in pentacene. Phys. Rev. Lett. 96, 156803 (2006).CrossRefGoogle ScholarPubMed
Kakuta, H., Hirahara, T., Matsuda, I., Nagao, T., Hasegawa, S., Ueno, N., and Sakamoto, K.: Electronic structures of the highest occupied molecular orbital bands of a pentacene ultrathin film. Phys. Rev. Lett. 98, 247601 (2007).CrossRefGoogle ScholarPubMed
Yamane, H., Yoshimura, D., Kawabe, E., Sumii, R., Kanai, K., Ouchi, Y., Ueno, N., and Seki, K.: Electronic structure at highly ordered organic/metal interfaces: Pentacene on Cu(110). Phys. Rev. B 76, 165436 (2007).CrossRefGoogle Scholar
Ohtomo, M., Suzuki, T., Shimada, T., and Hasegawa, T.: Band dispersion of quasi-single crystal thin film phase pentacene monolayer studied by angle-resolved photoelectron spectroscopy. Appl. Phys. Lett. 95, 123308 (2009).CrossRefGoogle Scholar
Hatch, R., Huber, D., and Höchst, H.: HOMO band structure and anisotropic effective hole mass in thin crystalline pentacene films. Phys. Rev. B 80, 081411(R) (2009).CrossRefGoogle Scholar
Nakayama, Y., Mizuno, Y., Hikasa, M., Yamamoto, M., Matsunami, M., Ideta, S., Tanaka, K., Ishii, H., and Ueno, N.: Single-crystal pentacene valence-band dispersion and its temperature dependence. J. Phys. Chem. Lett. 8, 1259 (2017).CrossRefGoogle ScholarPubMed
Lee, J.Y., Roth, S., and Park, Y.W.: Anisotropic field effect mobility in single crystal pentacene. Appl. Phys. Lett. 88, 252106 (2006).CrossRefGoogle Scholar
Nakayama, Y., Uragami, Y., Yamamoto, M., Yonezawa, K., Mase, K., Kera, S., Ishii, H., and Ueno, N.: High-resolution core-level photoemission measurements on the pentacene single crystal surface assisted by photoconduction. J. Phys.: Condens. Matter 28, 094001 (2016).Google ScholarPubMed
Mizuno, Y., Yamamoto, M., Kinjo, H., Mase, K., Ishii, H., Okudaira, K.K., Yoshida, H., and Nakayama, Y.: Effects of the ambient exposure on the electronic states of the clean surface of the pentacene single crystal. Mol. Cryst. Liq. Cryst. 648, 216 (2017).CrossRefGoogle Scholar
Toyoshima, A., Kikuchi, T., Tanaka, H., Mase, K., Amemiya, K., and Ozawa, K.: Performance of PF BL-13A, a vacuum ultraviolet and soft X-ray undulator beamline for studying organic thin films adsorbed on surfaces. J. Phys.: Conf. Ser. 425, 152019 (2013).Google Scholar
Seah, M.P., Gilmore, I.S., and Beamson, G.: XPS: Binding energy calibration of electron spectrometers 5—Re-evaluation of the reference energies. Surf. Interface Anal. 26, 642 (1998).3.0.CO;2-3>CrossRefGoogle Scholar
Ozawa, Y., Nakayama, Y., Machida, S., Kinjo, H., and Ishii, H.: Maximum probing depth of low-energy photoelectrons in an amorphous organic semiconductor film. J. Electron Spectrosc. Relat. Phenom. 197, 17 (2014).CrossRefGoogle Scholar
Jo, S. and Takenaga, M.: Morphologies of pentacene crystals obtained by physical vapor growth technique. Jpn. J. Appl. Phys. 49, 078002 (2010).CrossRefGoogle Scholar
Mattheus, C.C., Dros, A.B., Baas, J., Meetsma, A., de Boer, J.L., and Palstra, T.T.: Polymorphism in pentacene. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 57, 939 (2001).CrossRefGoogle ScholarPubMed
Xin, Q., Duhm, S., Bussolotti, F., Akaike, K., Kubozono, Y., Aoki, H., Kosugi, T., Kera, S., and Ueno, N.: Accessing surface brillouin zone and band structure of picene single crystals. Phys. Rev. Lett. 108, 226401 (2012).CrossRefGoogle ScholarPubMed
Machida, S., Nakayama, Y., Duhm, S., Xin, Q., Funakoshi, A., Ogawa, N., Kera, S., Ueno, N., and Ishii, H.: Highest-occupied-molecular-orbital band dispersion of rubrene single crystals as observed by angle-resolved ultraviolet photoelectron spectroscopy. Phys. Rev. Lett. 104, 156401 (2010).CrossRefGoogle ScholarPubMed
Nakayama, Y., Uragami, Y., Yamamoto, M., Machida, S., Kinjo, H., Mase, K., Koswattage, K.R., and Ishii, H.: Determination of the highest occupied molecular orbital energy of pentacene single crystals by ultraviolet photoelectron and photoelectron yield spectroscopies. Jpn. J. Appl. Phys. 53, 01AD03 (2014).CrossRefGoogle Scholar
Seah, M.P. and Dench, W.A.: Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2 (1979).CrossRefGoogle Scholar
Tanuma, S., Powell, C.J., and Penn, D.R.: Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range. Surf. Interface Anal. 21, 165 (1994).CrossRefGoogle Scholar
Yeh, J. and Lindau, I.: Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. At. Data Nucl. Data Tables 32, 1 (1985).CrossRefGoogle Scholar
Yamanaka, S., Hayakawa, K., Cojocaru, L., Tsuruta, R., Sato, T., Mase, K., Uchida, S., and Nakayama, Y.: Electronic structures and chemical states of methylammonium lead triiodide thin films and the impact of annealing and moisture exposure. J. Appl. Phys. 123, 165501 (2018).CrossRefGoogle Scholar
Haddon, R.C., Chi, X., Itkis, M.E., Anthony, J.E., Eaton, D.L., Siegrist, T., Mattheus, C.C., and Palstra, T.T.M.: Band electronic structure of one- and two-dimensional pentacene molecular crystals. J. Phys. Chem. B 106, 8288 (2002).CrossRefGoogle Scholar
Kera, S., Yamane, H., and Ueno, N.: First-principles measurements of charge mobility in organic semiconductors: Valence hole–vibration coupling in organic ultrathin films. Prog. Surf. Sci. 84, 135 (2009).CrossRefGoogle Scholar
Fröhlich, H. and Sewell, G.: Electric conduction in semiconductors. Proc. Phys. Soc. 2, 643 (1959).CrossRefGoogle Scholar
Ishii, H., Kobayashi, N., and Hirose, K.: Strong anisotropy of momentum-relaxation time induced by intermolecular vibrations of single-crystal organic semiconductors. Phys. Rev. B 88, 205208 (2013).CrossRefGoogle Scholar
Nguyen, T.P., Shim, J.H., and Lee, J.Y.: Density functional theory studies of hole mobility in picene and pentacene crystals. J. Phys. Chem. C 119, 11301 (2015).CrossRefGoogle Scholar
Canola, S., Pecoraro, C., and Negri, F.: Dimer and cluster approach for the evaluation of electronic couplings governing charge transport: Application to two pentacene polymorphs. Chem. Phys. 478, 130 (2016).CrossRefGoogle Scholar
Uemura, T., Yamagishi, M., Soeda, J., Takatsuki, Y., Okada, Y., Nakazawa, Y., and Takeya, J.: Temperature dependence of the Hall effect in pentacene field-effect transistors: Possibility of charge decoherence induced by molecular fluctuations. Phys. Rev. B 85, 035313 (2012).CrossRefGoogle Scholar
Yamane, H., Nagamatsu, S., Fukagawa, H., Kera, S., Friedlein, R., Okudaira, K.K., and Ueno, N.: Hole-vibration coupling of the highest occupied state in pentacene thin films. Phys. Rev. B 72, 153412 (2005).CrossRefGoogle Scholar
Kera, S., Hosoumi, S., Sato, K., Fukagawa, H., Nagamatsu, S.I., Sakamoto, Y., Suzuki, T., Huang, H., Chen, W., Wee, A.T.S., Coropceanu, V., and Ueno, N.: Experimental reorganization energies of pentacene and perfluoropentacene: Effects of perfluorination. J. Phys. Chem. C 117, 22428 (2013).CrossRefGoogle Scholar
Butko, V.Y., Chi, X., Lang, D.V., and Ramirez, A.P.: Field-effect transistor on pentacene single crystal. Appl. Phys. Lett. 83, 4773 (2003).CrossRefGoogle Scholar
Takeya, J., Nishikawa, T., Takenobu, T., Kobayashi, S., Iwasa, Y., Mitani, T., Goldmann, C., Krellner, C., and Batlogg, B.: Effects of polarized organosilane self-assembled monolayers on organic single-crystal field-effect transistors. Appl. Phys. Lett. 85, 5078 (2004).CrossRefGoogle Scholar
Takenobu, T., Watanabe, K., Yomogida, Y., Shimotani, H., and Iwasa, Y.: Effect of postannealing on the performance of pentacene single-crystal ambipolar transistors. Appl. Phys. Lett. 93, 073301 (2008).CrossRefGoogle Scholar
Kimura, Y., Niwano, M., Ikuma, N., Goushi, K., and Itaya, K.: Organic field effect transistor using pentacene single crystals grown by a liquid-phase crystallization process. Langmuir 25, 4861 (2009).CrossRefGoogle ScholarPubMed
Takeyama, Y., Ono, S., and Matsumoto, Y.: Organic single crystal transistor characteristics of single-crystal phase pentacene grown by ionic liquid-assisted vacuum deposition. Appl. Phys. Lett. 101, 083303 (2012).CrossRefGoogle Scholar
Arabi, S.A., Dong, J., Mirza, M., Yu, P., Wang, L., He, J., and Jiang, C.: Nanoseed assisted PVT growth of ultrathin 2D pentacene molecular crystal directly onto SiO2 substrate. Cryst. Growth Des. 16, 2624 (2016).CrossRefGoogle Scholar
Podzorov, V., Menard, E., Borissov, A., Kiryukhin, V., Rogers, J.A., and Gershenson, M.E.: Intrinsic charge transport on the surface of organic semiconductors. Phys. Rev. Lett. 93, 086602 (2004).CrossRefGoogle ScholarPubMed
Podzorov, V., Menard, E., Rogers, J., and Gershenson, M.: Hall effect in the accumulation layers on the surface of organic semiconductors. Phys. Rev. Lett. 95, 226601 (2005).CrossRefGoogle ScholarPubMed
Takeya, J., Kato, J., Hara, K., Yamagishi, M., Hirahara, R., Yamada, K., Nakazawa, Y., Ikehata, S., Tsukagoshi, K., Aoyagi, Y., Takenobu, T., and Iwasa, Y.: In-crystal and surface charge transport of electric-field-induced carriers in organic single-crystal semiconductors. Phys. Rev. Lett. 98, 196804 (2007).CrossRefGoogle ScholarPubMed
Li, Z.Q., Podzorov, V., Sai, N., Martin, M.C., Gershenson, M.E., Di Ventra, M., and Basov, D.N.: Light quasiparticles dominate electronic transport in molecular crystal field-effect transistors. Phys. Rev. Lett. 99, 016403 (2007).CrossRefGoogle ScholarPubMed
Nakayama, Y., Uragami, Y., Machida, S., Koswattage, K.R., Yoshimura, D., Setoyama, H., Okajima, T., Mase, K., and Ishii, H.: Full picture of the valence band structure of rubrene single crystals probed by angle-resolved and excitation energy dependent photoelectron spectroscopy. Appl. Phys. Express 5, 111601 (2012).CrossRefGoogle Scholar
Vollmer, A., Ovsyannikov, R., Gorgoi, M., Krause, S., Oehzelt, M., Lindblad, A., Mårtensson, N., Svensson, S., Karlsson, P., Lundvuist, M., Schmeiler, T., Pflaum, J., and Koch, N.: Two dimensional band structure mapping of organic single crystals using the new generation electron energy analyzer ARTOF. J. Electron Spectrosc. Relat. Phenom. 185, 55 (2012).CrossRefGoogle Scholar
Bussolotti, F., Yang, J., Yamaguchi, T., Yonezawa, K., Sato, K., Matsunami, M., Tanaka, K., Nakayama, Y., Ishii, H., Ueno, N., and Kera, S.: Hole-phonon coupling effect on the band dispersion of organic molecular semiconductors. Nat. Commun. 8, 173 (2017).CrossRefGoogle ScholarPubMed
Fratini, S., Mayou, D., and Ciuchi, S.: The transient localization scenario for charge transport in crystalline organic materials. Adv. Funct. Mater. 26, 2292 (2016).CrossRefGoogle Scholar
Supplementary material: File

Nakayama et al. supplementary material

Figures S1-S2

Download Nakayama et al. supplementary material(File)
File 1.4 MB