Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T03:57:05.788Z Has data issue: false hasContentIssue false

Anisotropic Thermal Expansion of Barium Hexaferrite Using Dynamic High-temperature X-ray Diffraction

Published online by Cambridge University Press:  31 January 2011

D. Sriram
Affiliation:
New York State College of Ceramics at Alfred University, Alfred, New York 14802
R. L. Snyder
Affiliation:
Department of Materials Science and Engineering, Ohio State University, Columbus, Ohio 43210
V. R. W. Amarakoon
Affiliation:
New York State College of Ceramics at Alfred University, Alfred, New York 14802
Get access

Abstract

Barium hexaferrite is a well-known ceramic permanent magnet and due to its high coercivity, remanence, and large uniaxial magnetic anisotropy, finds applications that compete with metallic magnets. Even though a number of the high-temperature properties of barium hexaferrite have been studied extensively, its anisotropic thermal expansion has not been reported so far. Dynamic high-temperature x-ray diffraction (HT-XRD) is one powerful method to obtain thermal expansion data for anisotropic polycrystalline materials in a very short period of time. In this paper the anisotropic nature of the thermal expansion coefficient of the barium hexaferrite phase is reported with the use of a dynamic HT-XRD setup. The thermal expansion coefficient (linear fit) was determined to be 8.36 × 10−6 K−1 along the ab plane to 1.4 × 10−5 K−1 along the c axis between the temperature range of 293 to 1343 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Philips Components Data Handbook MA02—Permanent Magnets (Philips, Eindhoven, The Netherlands, 1991).Google Scholar
2.Van Heffen, H.J.H, Electron. Compon. Appl. 3(22–30), 120 (1980).Google Scholar
3.Van den Broek, C.A.M and Stuijts, A.L., Philips Tech. Rev. 37, 157 (1977).Google Scholar
4.Adelskold, V., Ark. Kemi Mineral. Geol. A 12(29), 1 (1938).Google Scholar
5.Went, J.J., Rathenau, G.W., Gortner, E.W., and Van Oosterhout, G.W., Philips Tech. Rev. 13, 194 (1951/1952).Google Scholar
6.Obradors, X., Collomb, A., Pernet, M., Samaras, D., and Joubert, J.C., J. Solid State Chem. 56, 171 (1985).CrossRefGoogle Scholar
7.Routil, R.J. and Barham, D., Can. J. Chem. 52, 3235 (1974).CrossRefGoogle Scholar
8.Wong-Ng, W., McMurdie, H., Paretzkin, B., Hubbard, C., and Dragoo, A., Powder Diffr. 3, 249 (1988).CrossRefGoogle Scholar
9.Shin, H. and Kwon, S.J., Powder Diffr. 7, 212 (1992).CrossRefGoogle Scholar
10.Rathenau, G.W., Rev. Mod. Phys. 25, 297 (1953).CrossRefGoogle Scholar
11.Rathenau, G.W., Smit, J., and Stuijts, A.L., Z. Phys. 133, 250 (1952).CrossRefGoogle Scholar
12.Shirk, B.T. and Buessem, W.R., J. Appl. Phys. 40, 1294 (1969).CrossRefGoogle Scholar
13.Smit, J., Lotgering, F.K., and Enz, U., J. Appl. Phys. 31, 137S (1960).CrossRefGoogle Scholar
14.Meisen, U. and Eiling, A., IEEE Trans. Magn. 26, 21 (1990).CrossRefGoogle Scholar
15.Ram, S., Bahadur, D., and Chakravorty, D., J. Magn. Magn. Mater. 71, 359 (1988).CrossRefGoogle Scholar
16.Smit, J. and Beljers, H.G., Philips Res. Rep. 10, 113 (1955).Google Scholar
17.Chen, B.J., Rodriguez, M.A., Misture, S.T., and Snyder, R.L., Physica C 217, 367 (1993).CrossRefGoogle Scholar
18.Howard, S.A. and Snyder, R.L., J. Appl. Crystallogr. 22, 238 (1989).CrossRefGoogle Scholar
19.Soma, T. and Kagaya, H.M., EMIS Datarev. Ser. 4, 33 (1987).Google Scholar
20.Thermophysical Properties of Matter, edited by Touloukian, Y.S., Kirby, R.K., Taylor, R.E., and Desai, P.D. (Plenum, New York, 1975), Vol. 12.Google Scholar