Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T13:35:58.375Z Has data issue: false hasContentIssue false

Analytic method for the minimum time for binder removal from three-dimensional porous green bodies

Published online by Cambridge University Press:  31 January 2011

Stephen J. Lombardo*
Affiliation:
Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211
Z.C. Feng
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

An analytical expression was derived to predict the heating profile that minimizes the cycle time for the thermal removal of binder from porous green ceramic bodies. The analytical equation was based upon the solution to a three-dimensional convective transport equation that describes flow in porous media arising from the thermal decomposition of binder. The solution to the transport problem was then combined with an algorithm derived from variational calculus. The analytical expression described the time for binder removal in terms of the body dimensions, isotropic permeability, volume fraction of binder, and threshold pressure within the green body.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.German, R.M., Int. J. Powder Metall. 23, 237 (1987).Google Scholar
2.Lewis, J.A., Ann. Rev. Mater. Sci. 27, 147 (1997).CrossRefGoogle Scholar
3.Calvert, P. and Cima, M., J. Am. Ceram. Soc. 73, 575 (1990).CrossRefGoogle Scholar
4.Stangle, G.Y. and Aksay, I.A., Chem. Eng. Sci. 45, 1719 (1990).CrossRefGoogle Scholar
5.Tsai, D-S., AIChE J. 37, 547 (1991).CrossRefGoogle Scholar
6.Matar, S.A., Edirisinghe, M.J., Evans, J.R.G., and Twizell, E.H., J. Mater. Res. 8, 617 (1993).CrossRefGoogle Scholar
7.Song, J.H., Edirisinghe, M.J., Evans, J.R.G., and Twizell, E.H., J. Mater. Res. 11, 830 (1996).CrossRefGoogle Scholar
8.West, A.C. and Lombardo, S.J., Chem. Eng. J. 71, 243 (1998).CrossRefGoogle Scholar
9.Liau, L.C-K., Peters, B., Krueger, D.S., Gordon, A., Viswanath, D.S., and Lombardo, S.J., J. Am. Ceram. Soc. 83, 2645 (2000).CrossRefGoogle Scholar
10.Peters, B. and Lombardo, S.J., J. Mater. Sci.: Mater. Electron. 12, 403 (2001).Google Scholar
11.Shende, R.V. and Lombardo, S.J., J. Am. Ceram. Soc. 85, 780 (2002).CrossRefGoogle Scholar
12.Lombardo, S.J. and Feng, Z.C., J. Mater. Res. 17, 1434 (2002).CrossRefGoogle Scholar
13.Feng, K. and Lombardo, S.J., J. Am. Ceram. Soc. 86, 234 (2003).CrossRefGoogle Scholar
14.Lombardo, S.J. and Feng, Z.C., J. Am. Ceram. Soc. (in press).Google Scholar
15.Denn, M.M., Optimization by Variational Methods (McGraw-Hill, New York, 1969).Google Scholar
16.Feng, Z.C., He, B., and Lombardo, S.J., J. Appl. Mech. 69, 497 (2002).CrossRefGoogle Scholar
17.Klinkenberg, L.J., Drill. Prod. Pract. API 200 (1941).Google Scholar
18.Brown, G.P., DiNardo, A., Cheng, G.K., and Sherwood, T.K., J. Appl. Phys. 17, 802 (1946).CrossRefGoogle Scholar
19.Wakao, N., Otani, S., and Smith, J.M., AIChE J. 11, 435 (1965).CrossRefGoogle Scholar