Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T18:59:05.288Z Has data issue: false hasContentIssue false

Analysis of resistance switching and conductive filaments inside Cu-Ge-S using in situ transmission electron microscopy

Published online by Cambridge University Press:  31 January 2012

Takashi Fujii
Affiliation:
Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan; and Research Fellow of the Japan Society for the Promotion of Science, Japan
Masashi Arita
Affiliation:
Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
Yasuo Takahashi*
Affiliation:
Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
Ichiro Fujiwara
Affiliation:
Semiconductor Technology Academic Research Center, Yokohama 222-0033, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In situ transmission electron microscopy (TEM) was carried out to investigate the dynamics of resistance switching in a solid electrolyte, Cu-Ge-S. By applying voltage to Pt-Ir/Cu-Ge-S/Pt-Ir, where Pt-Ir constituted the electrodes, a deposit containing conductive filaments composed mainly of Cu was formed around the cathode. As voltage continued to be applied, the deposit grew and finally narrow conductive filaments made contact with the anode. This corresponded to resistance switching from high- to low-resistance states (HRS and LRS). By alternating the voltage, the deposit contracted toward the cathode and detached from the anode. The resistance immediately changed from LRS to HRS. By applying voltage, the deposit containing Cu-based filaments grew and shrank, and resistance switching occurred at the electrolyte-anode interface. This conductive filament-formation model, which was recently reported, was experimentally confirmed with TEM through dynamic observations of the deposit-containing filaments.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Liu, S.Q., Wu, N.J., and Ignatiev, A.: Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749 (2000).CrossRefGoogle Scholar
2.Sawa, A., Fujii, T., Kawasaki, M., and Tokuda, Y.: Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85, 4073 (2004).CrossRefGoogle Scholar
3.Kaji, H., Kondo, H., Fujii, T., Arita, M., and Takahashi, Y.: Effect of electrode and interface oxide on the property of ReRAM composed of Pr0.7Ca0.3MnO3. IOP Conf. Ser. Mater. Sci. Eng. 8, 012032 (2010).CrossRefGoogle Scholar
4.Baek, I.G., Lee, M.S., Seo, S., Lee, M.J., Seo, D.H., Suh, D.-S., Park, J.C., Park, S.O., Kim, H.S., Yoo, I.K., Chung, U-In, and Moon, J.T.: Highly scalable non-volataile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. Tech. Dig. Int. Electron Devices Meet. (San Francisco, CA, 2004), pp. 587590.Google Scholar
5.Sawa, A.: Resistive switching in transition metal oxides. Mater. Today 11, 28 (2008).CrossRefGoogle Scholar
6.Park, G.-S., Li, X.-S., Kim, D.-C., Jung, R.-J., Lee, M.-J., and Seo, S.: Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Appl. Phys. Lett. 91, 222103 (2007).CrossRefGoogle Scholar
7.Kondo, H., Kaji, H., Fujii, T., Hamada, K., Arita, M., and Takahashi, Y.: The influence of annealing temperature on ReRAM characteristics of metal/NiO/metal structure. IOP Conf. Ser. Mater. Sci. Eng. 8, 012034 (2010).CrossRefGoogle Scholar
8.Yoshida, C., Tsunoda, K., Noshiro, H., and Sugiyama, Y.: High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application. Appl. Phys. Lett. 91, 223510 (2007).CrossRefGoogle Scholar
9.Fujiwara, K., Nemoto, T., Rozenberg, M.J., Nakamura, Y., and Takagi, H.: Resistance switching and formation of a conductive bridge in metal/binary oxide/metal structure for memory devices. Jpn. J. Appl. Phys. 47, 6266 (2008).CrossRefGoogle Scholar
10.Kozicki, M.N., Park, M., and Mitkova, M.: Nanoscale memory elements based on solid-state electrolytes. IEEE. Trans. Nanotechnol. 4, 331 (2005).CrossRefGoogle Scholar
11.Kozicki, M.N., Balakrishnan, M., Gopalan, C., Ratnakumar, C., and Mitkova, M.: Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S electrolytes. Proc. IEEE Non-Volatile Memory Technol. Symp. (Dallas, TX, 2005), pp. 8389.Google Scholar
12.Kozicki, M.N., Ratnakumar, C., and Mitkova, M.: Electrodeposit formation in solid electrolytes. Proc. IEEE Non-Volatile Memory Technol. Symp. (San Mateo, CA, 2006), pp. 111115.Google Scholar
13.Kamalanathan, D., Russo, U., Ielmini, D., and Kozicki, M.N.: Voltage-driven on-off transition and tradeoff with program and erase current in programmable metallization cell (PMC) memory. IEEE Electron Device Lett. 30, 533 (2009).CrossRefGoogle Scholar
14.Sakamoto, T., Sunamura, H., Kawaura, H., Hasegawa, T., Nakayama, T., and Aono, M.: Nanometer-scale switching using copper sulfide. Appl. Phys. Lett. 82, 3032 (2003).CrossRefGoogle Scholar
15.Terabe, K., Hasegawa, T., Nakayama, T., and Aono, M.: Quantized conductance atomic switch. Nature 433, 47 (2005).CrossRefGoogle ScholarPubMed
16.Xu, Z., Bando, Y., Wang, W., Bai, X., and Golberg, D.: Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. ACS Nano 4, 2515 (2010).CrossRefGoogle ScholarPubMed
17.Tsui, S., Baikalov, A., Cmaidalka, J., Sun, Y.Y., Wang, Y.Q., Xue, Y.Y., Chu, C.W., Chen, L., and Jacobson, A.J.: Field-induced resistive switching in metal-oxide interfaces. Appl. Phys. Lett. 85, 317 (2004).CrossRefGoogle Scholar
18.Nian, Y.B., Srozier, J., Wu, N.J., Chen, X., and Ignatiev, A.: Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 98, 146403 (2007).CrossRefGoogle ScholarPubMed
19.Waser, R. and Aono, M.: Nanoionics-based resistive switching memories. Nat Mater. 6, 833 (2007).CrossRefGoogle ScholarPubMed
20.Waser, R., Dittmann, R., Staikov, G., and Szot, K.: Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632 (2009).CrossRefGoogle ScholarPubMed
21.Tsujii, Y., Sakamoto, T., Banno, N., Hada, H., and Aono, M.: Off-state and turn-on characteristics of solid electrolyte switch. Appl. Phys. Lett. 96, 023504 (2010).CrossRefGoogle Scholar
22.Sakamoto, T., Lister, K., Banno, N., Hasegawa, T., Terabe, K., and Aono, M.: Electronic transport in Ta2O5 resistive switch. Appl. Phys. Lett. 91, 092110 (2007).CrossRefGoogle Scholar
23.Schindler, C., Staikov, G., and Waiser, R.: Electrode kinetics of Cu-SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories. Appl. Phys. Lett. 94, 072109 (2009).CrossRefGoogle Scholar
24.Tada, M., Sakamoto, T., Banno, N., Aono, M., Hada, H., Kasai, N.: Nonvolatile crossbar switch using TiOx/TaSiOy solid electrolyte. IEEE Trans. Electron Devices 57, 1987 (2010).CrossRefGoogle Scholar
25.Aratani, K., Ohba, K., Mizuguchi, T., Yasuda, S., Shiimoto, T., Tsushima, T., Sone, T., Endo, K., Kouchiyama, A., Sasaki, S., Maesaka, A., Yamada, N., and Narisawa, H.: A novel resistance memory with high scalability and nanosecond switching. Tech. Dig. Int. Electron Devices Meet. (Washington, D.C., 2007), pp. 783786.Google Scholar
26.Yasuhara, R., Fujiwara, K., Horiba, K., Kumigashira, H., Kotsugi, M., Oshima, M., and Takagi, H.: Inhomogeneous chemical states in resistance-switching devices with a planar-type Pt/CuO/Pt structure. Appl. Phys. Lett. 95, 012110 (2009).CrossRefGoogle Scholar
27.Ohnishi, H., Kondo, Y., and Takayanagi, K.: Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780 (1998).CrossRefGoogle Scholar
28.Kizuka, T., Umehara, S., and Fujiwara, S.: Metal-insulator transition in stable one-dimensional arrangements of single gold atoms. Jpn. J. Appl. Phys. 40, L71 (2001).CrossRefGoogle Scholar
29.Arita, M., Okubo, Y., Hamada, K., Takahashi, Y.: Tunnel current measurement of MgO and MgO/Fe/MgO nanoregions during TEM observation. Superlattices Microstruct 44, 633 (2008).CrossRefGoogle Scholar
30.Jooss, C.H., Hoffmann, J., Fladerer, J., Ehrhardt, M., Beetz, T., Wu, L., and Zhu, Y.: Electric pulse induced resistance change effect in manganites due to polaron localization at the metal-oxide interfacial region. Phys. Rev. B 77, 132409 (2008).CrossRefGoogle Scholar
31.Fujii, T., Kaji, H., Kondo, H., Hamada, K., Arita, M., and Takahashi, Y.: I-V hysteresis of Pr0.7Ca0.3MnO3 during TEM observation. IOP Conf. Ser. Mater. Sci. Eng. 8, 012033 (2010).CrossRefGoogle Scholar
32.Kwon, D.-H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.H., Li, X.-S., Park, G.-S., Lee, B., Han, S., Kim, M., and Hwang, C.S.: Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148 (2010).CrossRefGoogle ScholarPubMed
33.Fujii, T., Arita, M., Hamada, K., Kondo, H., Kaji, H., Takahashi, Y., Moniwa, M., Fujiwara, I., Yamaguchi, T., Aoki, M., Maeno, Y., Kobayashi, T., and Yoshimaru, M.: I-V measurement of NiO nanoregion during observation by transmission electron microscopy. J. Appl. Phys. 109, 053702 (2011).CrossRefGoogle Scholar
34.Cha, D., Ahn, S.J., Park, S.Y., Horii, H., Kim, D.H., Kim, Y.K., Park, S.O., Jung, U.I., Kim, M.J., and Kim, J.: A direct observation on the structure evolution of memory-switching phenomena using in-situ TEM. Dig. Tech. Symp. VLSI Technol. (Kyoto, Japan, 2009), pp. 204205.Google Scholar
35.Gao, P., Wang, Z., Fu, W., Liao, Z., Liu, K., Wang, W., Bai, X., and Wang, E.: In situ TEM studies of oxygen vacancy migration for electrically induced resistance change effect in cerium oxides. Micron 41, 301 (2010).CrossRefGoogle ScholarPubMed
36.Hirose, R., Arita, M., Hamada, K., and Takahashi, Y.: In situ conductance measurement of a limited number of nanoparticles during transmission electron microscopy observation. Jpn. J. Appl. Phys. 44, L790 (2005).CrossRefGoogle Scholar
37.Fujii, T., Arita, M., Takahashi, Y., and Fujiwara, I.: In situ transmission electron microscopy analysis of conductive filament during solid electrolyte resistance switching. Appl. Phys. Lett. 98, 212104 (2011).CrossRefGoogle Scholar
38.Hirose, R., Arita, M., Hamada, K., and Okada, A.: Tip production technique to form ferromagnetic nanodots. Mater. Sci. Eng. C 23, 927 (2003).CrossRefGoogle Scholar
39.Hamada, T. and Fujita, F.E.: Interference function of crystalline embryo model of amorphous metals 1. Jpn. J. Appl. Phys. 21, 981 (1982).CrossRefGoogle Scholar