Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T00:48:52.415Z Has data issue: false hasContentIssue false

Analysis of nitride films on silicon substrates by ion beam methods

Published online by Cambridge University Press:  03 March 2011

Z.S. Zheng
Affiliation:
Texas Center for Superconductivity, University of Houston, Houston, Texas 77204–5932
J.R. Liu
Affiliation:
Texas Center for Superconductivity, University of Houston, Houston, Texas 77204–5932
X.T. Cui
Affiliation:
Texas Center for Superconductivity, University of Houston, Houston, Texas 77204–5932
W.K. Chu
Affiliation:
Texas Center for Superconductivity, University of Houston, Houston, Texas 77204–5932
S.P. Rangarajan
Affiliation:
Department of Chemistry, University of Houston, Houston, Texas 77204–5641
D.M. Hoffman
Affiliation:
Department of Chemistry, University of Houston, Houston, Texas 77204–5641
Get access

Abstract

The simultaneous determination of light element contamination levels and accurate nitrogen-to-metal ratios in nitride thin films deposited on silicon substrates is demonstrated by using α-particle beam energies in the range 3–4 MeV. In this energy range, significant light element sensitivity enhancements are observed, while the heavy elements show classical Rutherford behavior. The use of resonance scattering at different resonance energies is shown to be the method of choice for analyzing BN films on silicon. Also, a technique is suggested for analyzing very thin films in which an aluminum foil substrate and buffer layer are used to enhance sensitivities.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Chu, W. K., Mayer, J. W., and Nicolet, M. A., Backscattering Spectrometry (Academic Press, New York, 1978).CrossRefGoogle Scholar
2Feng, Y., Zhou, G. Y., Sun, C., and Li, B. Z., private communication.Google Scholar
3Blanpain, B., Revesz, P., Doolittle, L. R., Purser, K. H., and Mayer, J. W., Nucl. Instrum. Methods B34, 459 (1988).CrossRefGoogle Scholar
4Revesz, P., Li, J., Vizkelethy, Gy., and Mayer, J. W., Nucl. Instrum. Methods B58, 132 (1991).CrossRefGoogle Scholar
5Hoffman, D. M., Rangarajan, S.P., Athavale, S. D., Economou, D. J., Liu, J. R., Zheng, Z. S., and Chu, W. K., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics, edited by Desu, S. B., Beach, D. B., Wessels, B. W., and Gokoglu, S. (Mater. Res. Soc. Symp. Proc. 335, Pittsburgh, PA, 1994).Google Scholar
6Hoffman, D.M., Rangarajan, S.P., Athavale, S.D., Deshmukh, S. C., Economou, D.J., Liu, J-R., Zheng, Z.S., and Chu, W-K., J. Mater. Res., 9, 3019 (1994).CrossRefGoogle Scholar
7Hoffman, D. M., Polyhedron 13, 1169 (1994).CrossRefGoogle Scholar
8Lukovski, G., Tsu, D. V., Rudder, R. A., and Markunas, R. J., in Thin Film Processes II, edited by Vossen, J. L. and Kern, W. (Academic Press, New York, 1991).Google Scholar
9Currie, L. A., Anal. Chem. 40, 586 (1968).CrossRefGoogle Scholar
10Leavitt, J.A., McIntyre, L.C. Jr., Stoss, P., Oder, J.G., Ashbaugh, M.D., Dezvfouly-Ariomandy, B., Yang, Z-M., and Lin, Z., Nucl. Instrum. Methods B40&41, 776 (1989).CrossRefGoogle Scholar
11Feng, Ye, Zhou, Z., Zhou, C., and Zhao, G., Nucl. Instrum. Methods B86, 225 (1994).CrossRefGoogle Scholar
12Ye, F., Zhuying, Z., Gouging, Z., and Fujia, Y., Nucl. Instrum. Methods B94, 11 (1994).Google Scholar
13Leavitt, J. A., McĬntyre, L.C. Jr., Ashbaugh, M. D., Oder, J. G., Lin, Z., and Dezvfouly-Ariomandy, B., Nucl. Instrum. Methods B44, 260 (1990).CrossRefGoogle Scholar
14Monocoffre, N., Raisanen, J., Jaffrezic, H., and Tousset, J., Nucl. Instrum. Methods B45, 81 (1990).CrossRefGoogle Scholar
15Liu, J.R., Zheng, Z. S., and Chu, W. K., unpublished.Google Scholar