Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-08T15:24:06.310Z Has data issue: false hasContentIssue false

An outlook on the potential of Si nanocrystals as luminescent probes for bioimaging

Published online by Cambridge University Press:  27 September 2012

Elisabetta Borsella
Affiliation:
ENEA, C.R. Frascati, I-00044 Frascati, Rome, Italy
Rosaria D’Amato
Affiliation:
ENEA, C.R. Frascati, I-00044 Frascati, Rome, Italy
Mauro Falconieri*
Affiliation:
ENEA, C.R. Casaccia, I-00123 Rome, Italy
Enrico Trave
Affiliation:
Department of Molecular Sciences and Nanosystems, Ca’ Foscari University, Dorsoduro 2137, I-30123 Venezia, Italy
Alice Panariti
Affiliation:
Department of Health Science, University of Milano-Bicocca, 4820900 Monza, Monza and Brianza, Italy
Ilaria Rivolta
Affiliation:
Department of Health Science, University of Milano-Bicocca, 4820900 Monza, Monza and Brianza, Italy
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Silicon nanocrystals (Si-nc) present several plus points as advanced fluorescent biomarkers but suffer from difficulties met in controlling their intrinsic photoluminescence (PL). Here, we first consider the reasons for this difficulty, showing results that support an interface defect-related origin of the PL. Attainment of a controlled PL emission would then require tuning of defects in the capping oxide, a hard and yet unaddressed task. Alternatively, we demonstrate the possible use of Si-nc as antennas, or sensitizers, of a luminescent rare-earth ion in an engineered fluorophore. In this approach the relatively high and broadband optical absorption of Si-nc was exploited, keeping the advantages of a near-infrared inorganic light emitter. Another fundamental part of the assessment of Si-nc for bioimaging is their biocompatibility. Here, we report toxicity tests based on the lactate dehydrogenase release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays on epithelial cells and fibroblasts, confirming that Si-nc in concentration suitable for luminescent labeling do not affect significantly the cells viability.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Probst, J., Dembski, S., Milde, M., and Rupp, S.: Luminescent nanoparticles and their use for in vitro and in vivo diagnostics. Expert Rev. Mol. Diagn. 12, 49 (2012).CrossRefGoogle ScholarPubMed
Wang, F., Tan, W.B., Zhang, Y., Fan, X., and Wang, M.: Luminescent nanomaterials for biological labelling. Nanotechnology 17, R1R13 (2006).CrossRefGoogle Scholar
Klostranec, J.K. and Chen, W.C.: Quantum dots in biological and biomedical research: Recent progress and present challenges. Adv. Mater. 18, 1953 (2006).CrossRefGoogle Scholar
Parak, W.J., Pellegrino, T., and Plank, C.: Labelling of cells with quantum dots. Nanotechnology 16, R9R25 (2005).CrossRefGoogle ScholarPubMed
Derfus, A.M., Chan, W.C., and Bathia, S.N.: Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11 (2004).CrossRefGoogle ScholarPubMed
Silicon Nanocrystals: Fundamentals, Synthesis and Applications, edited by Pavesi, L. and Turan, R. (Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, Germany, 2010).CrossRefGoogle Scholar
Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 (1990).CrossRefGoogle Scholar
Prokes, S.M., Carlos, W.E., and Glembocki, O.J.: Defect-based model for room-temperature visible photoluminescence in porous silicon. Phys. Rev. B 50, 17093 (1994).CrossRefGoogle ScholarPubMed
Prakash, G.V., Daldosso, N., Degoli, E., Iacona, F., Cazzanelli, M., Gaburro, Z., Pacifici, D., Priolo, F., Arcangeli, C., Filonov, A.B., Ossicini, S., and Pavesi, L.: Structural and optical properties of PECVD grown silicon nanocrystals. J. Nanosci. Tech. 1, 159 (2001).Google ScholarPubMed
Walters, R.J., Kalkman, J., Polman, A., Atwater, H.A., and de Dood, M.J.A.: Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2. Phys. Rev. B 73, 132302 (2006).CrossRefGoogle Scholar
Huisken, F., Ledoux, G., Guillois, O., and Reynaud, C.: Light emitting silicon nanocrystals from laser pyrolysis. Adv. Mater. 14, 1861 (2002).CrossRefGoogle Scholar
D’Amato, R., Falconieri, M., Fabbri, F., Bello, V., and Borsella, E.: Preparation of luminescent Si nanoparticles by tailoring the size, crystallinity and surface composition. J. Nanopart. Res. 12, 1845 (2010).CrossRefGoogle Scholar
Lacour, F., Guillois, O., Portier, X., Perez, H., Herlin, N., and Reynaud, C.: Laser pyrolysis synthesis and characterization of luminescent silicon nanocrystals. Physica E 38, 1 (2007).CrossRefGoogle Scholar
Belomoin, G., Therrien, J., and Nayfeh, M.: Oxide and hydrogen capped ultrasmall blue luminescent Si nanoparticles. Appl. Phys. Lett. 77, 779 (2000).CrossRefGoogle Scholar
Li, X., He, Y., Talukdar, S.S., and Swihart, M.T.: Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum. Langmuir 19, 8490 (2003).CrossRefGoogle Scholar
Mangolini, L., Thimsen, E., and Kortshagen, U.: High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5, 655 (2005).CrossRefGoogle ScholarPubMed
Choi, J., Wang, N.S., and Reipa, V.: Photoassisted tuning of silicon nanocrystal photoluminescence. Langmuir 23, 3388 (2007).CrossRefGoogle ScholarPubMed
Veinot, J.: Surface passivation and functionalization of Si nanocrystals, in Silicon Nanocrystals: Fundamentals, Synthesis and Applications, edited by Pavesi, L. and Turan, R. (Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, Germany, 2010); p. 155.CrossRefGoogle Scholar
Wang, Q., Ni, H., Pietzsch, A., Hennies, F., Bao, Y., and Chao, Y.: Synthesis of water-dispersible photoluminescent silicon nanoparticles and their use in biological fluorescent imaging. J. Nanopart. Res. 13, 405 (2011).CrossRefGoogle Scholar
Li, Z.F. and Ruckenstein, E.: Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett. 4, 1463 (2004).CrossRefGoogle Scholar
Warner, J.H., Hoshino, A., Yamamoto, K., and Tilley, R.D.: Water-soluble photoluminescent silicon quantum dots. Angew. Chem. 117, 4626 (2005).CrossRefGoogle Scholar
Erogbogbo, F., Yong, K-T., Roy, I., Xu, G.X., Prasad, P.N., and Swihart, M.T.: Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2, 873 (2008).CrossRefGoogle ScholarPubMed
He, Y., Zhong, Y., Peng, F., Wei, X., Su, Y., Lu, Y., Su, S., Gu, W., Liao, L., and Lee, S-T.: One-pot microwave synthesis of water-dispersible, ultraphoto-and pH-stable, and highly fluorescent silicon quantum dots. J. Am. Chem. Soc. 133, 14192 (2011).CrossRefGoogle ScholarPubMed
Borsella, E., Falconieri, M., Herlin, N., Loschenov, V., Miserocchi, G., Nie, Y., Rivolta, I., Ryabova, A., and Wang, D.: Biomedical and sensor applications of silicon nanoparticles, in Silicon Nanocrystals: Fundamentals, Synthesis and Applications, edited by Pavesi, L. and Turan, R. (Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, Germany, 2010); p. 507.CrossRefGoogle Scholar
He, G., Zheng, Q., Yong, K-T., Erogbogbo, F., Swihart, M.T., and Prasad, P.N.: Two-and three-photon absorption and frequency upconverted emission of silicon quantum dots. Nano Lett. 8, 2688 (2008).CrossRefGoogle ScholarPubMed
Falconieri, M., D’Amato, R., Fabbri, F., Carpanese, M., and Borsella, E.: Two-photon excitation of luminescence in pyrolytic silicon nanocrystals. Physica E 41, 951 (2009).CrossRefGoogle Scholar
Erogbogbo, F., Yong, K-T., Roy, I., Hu, R., Law, W-C., Zhao, W., Ding, H., Wu, F., Kumar, R., Swihart, M.T., and Prasad, P.N.: In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5, 413 (2011).CrossRefGoogle ScholarPubMed
Erogbogbo, F., Tien, C., Chang, C., Yong, K., Law, W., Ding, H., Roy, I., Swihart, M., and Prasad, P.: Bioconjugation of luminescent silicon quantum dots for selective up-take by cancer cells. Bioconjugate Chem. 22, 1081 (2011).CrossRefGoogle Scholar
Tu, C., Xuchu, M., Pantazis, P., Kauzlarich, S.M., and Louie, A.Y.: Paramagnetic, silicon quantum dots for magnetic resonance and two-photon imaging of macrophages. J. Am. Chem. Soc. 132, 2016 (2010).CrossRefGoogle ScholarPubMed
Pi, X.D., Mangolini, L., Campbell, S.A., and Kortshagen, U.: Room-temperature atmospheric oxidation of Si nanocrystals after HF etching. Phys. Rev. B 75, 085423 (2007).CrossRefGoogle Scholar
Vincent, J., Maurice, V., Paquez, X., Sublemontier, O., Laconte, Y., Guillois, O., Reynaud, C., Herlin-Boime, N., Raccurt, O., and Tardif, F.: Effect of water and UV passivation on the luminescence of suspensions of silicon quantum dots. J. Nanopart. Res. 12, 39 (2010).CrossRefGoogle Scholar
Clark, R.J., Dang, M.K.M., and Veinot, J.G.C.: Exploration of organic acid chain length on water-soluble silicon quantum dot surfaces. Langmuir 26, 15657 (2010).CrossRefGoogle ScholarPubMed
Sato, S. and Swihart, M.: Propionic-acid-terminated silicon nanoparticles: Synthesis and optical characterization. Chem. Mater. 19, 680 (2006).Google Scholar
Delarue, C., Allan, G., and Lannoo, M.: Theoretical aspects of the luminescence of porous silicon. Phys. Rev. B 48, 11024 (1993).CrossRefGoogle Scholar
Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G., and Delarue, C.: Electronic states and luminescence in porous silicon quantum dots: The role of oxygen. Phys. Rev. Lett. 82, 197 (1999).CrossRefGoogle Scholar
Pudzer, A., Williamson, A.J., Grossman, J.C., and Galli, G.: Computational studies of the optical emission of silicon nanocrystals. J. Am. Chem. Soc. 125, 2786 (2003).Google Scholar
Glinka, Y.D., Lin, S.H., Hwang, L.P., and Chen, Y.T.: Photoluminescence from mesoporous silica: Similarity of properties to porous silicon. Appl. Phys. Lett. 77, 3968 (2000).CrossRefGoogle Scholar
Glinka, Y.D., Zyubin, A.S., Mobel, A.M., Lin, S.H., Hwang, L.P., and Chen, Y.T.: Photoluminescence from mesoporous silica akin to that from nanoscale silicon: The nature of light-emitters. Chem. Phys. Lett. 358, 180 (2002).CrossRefGoogle Scholar
Godefroo, S., Hayne, M., Jivanescu, M., Stesmans, A., Zacharias, M., Lebedev, O.I., Van Tendeloo, G., and Moshchalkov, V.V.: Classification and control of the origin of photoluminescence from Si nanocrystals. Nat. Nanotechnol. 3, 174 (2008).CrossRefGoogle ScholarPubMed
Choi, J., Wang, N.S., and Reipa, V.: Conjugation of the photoluminescent silicon nanoparticles to streptavidin. Bioconjugate Chem. 22, 1081 (2008).Google Scholar
Fujii, M., Yoshida, M., Kanzawa, Y., Hayashi, S., and Yamamoto, K.: 1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+. Appl. Phys. Lett. 71, 1198 (1997).CrossRefGoogle Scholar
Priolo, F., Franzò, G., Pacifici, D., Vinciguerra, V., Iacona, F., and Irrera, A.: Role of energy transfer in the optical properties of un-doped and Er-doped interacting Si nanocrystals. J. Appl. Phys. 89, 264 (2001).CrossRefGoogle Scholar
Roschuk, T., Li, J., Wojcik, J., Mascher, P., and Calder, I.D.: Lighting applications of rare-earth-doped silicon oxides, in Silicon Nanocrystals: Fundamentals, Synthesis and Applications, edited by Pavesi, L. and Turan, R. (Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, Germany, 2010); p. 487.CrossRefGoogle Scholar
Kovalev, D., Heckler, H., Polisski, G., and Koch, F.: Optical properties of Si nanocrystals. Phys. Status Solidi B 215, 871 (1999).3.0.CO;2-9>CrossRefGoogle Scholar
Goesele, U.: Shedding new light on silicon. Nat. Nanotechnol. 3, 134 (2008).CrossRefGoogle Scholar
Borsella, E., D’Amato, R., Fabbri, F., Falconieri, M., Trave, E., Bello, V., Mattei, G., Nie, Y., and Wang, D.: On the role of non-bridging oxygen centers in the red luminescence emission from silicon nanocrystals. Phys. Status Solidi C 8, 974 (2011).CrossRefGoogle Scholar
Ben-Chorin, M., Averboukh, B., Kovalev, D., Polisski, G., and Koch, F.: Influence of quantum confinement on the critical points of the band structure of Si. Phys. Rev. Lett. 77, 763 (1996).CrossRefGoogle ScholarPubMed
Skuja, L.: The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2. J. Non-Cryst. Solids 179, 51 (1994).CrossRefGoogle Scholar
Munekuni, S., Yamanaka, T., Shimogaichi, Y., Tohmon, R., Ohki, Y., Nagasawa, K., and Hama, Y.: Various types of nonbridging oxygen hole center in high-purity silica glass. J. Appl. Phys. 68, 1212 (1990).CrossRefGoogle Scholar
Zyubin, A.S., Glinka, Y.D., Mebel, A.M., Lin, S.H., Hwang, L.P., and Chen, Y.T.: Red and near-infrared photoluminescence from silica-based nanoscale materials: Experimental investigation and quantum-chemical modeling. J. Chem. Phys. B 116, 281 (2002).CrossRefGoogle Scholar
Pavesi, L. and Ceschini, M.: Stretched-exponential decay of the luminescence in porous silicon. Phys. Rev. B 48, 17625 (1993).CrossRefGoogle ScholarPubMed
Jayatilleka, H., Diamare, D., Wojdak, M., Kenyon, A.J., Mokry, C.R., Simpson, P.J., Knights, A.P., Crowe, I., and Halsall, M.P.: Probing energy transfer in an ensemble of silicon nanocrystals. J. Appl. Phys. 110, 033522 (2011).CrossRefGoogle Scholar
Tasciotti, E., Liu, X., Bhavane, R., Plant, K., Leonard, A., Price, B., Cheng, M.C., Decuzzi, P., Tour, J., Robertson, F., and Ferrari, M.: Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotechnol. 3, 151 (2008).CrossRefGoogle ScholarPubMed
Fotakis, G. and Timbrell, J.A.: In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett. 160, 171 (2006).CrossRefGoogle ScholarPubMed
Zange, R., Li, Y., and Kissel, T.: Biocompatibility testing of ABA triblock copolymers consisting of poly(L-lactic-co-glycolic acid) A blocks attached to a central poly(ethylene oxide) B block under in vitro conditions using different L929 mouse fibroblasts cell culture models. J. Controlled Release 56, 249 (1998).CrossRefGoogle ScholarPubMed
Nordin, M., Wieslander, A., Martinson, E., and Kjellstrand, P.: Effects of exposure period of acetylsalicylic acid, paracetamol and isopropanol on L929 cytotoxicity. Toxicol. In Vitro 5, 449 (1991).CrossRefGoogle ScholarPubMed
Fujioka, K., Hiruoka, M., Sato, K., Manabe, N., Myasaka, R., Hanada, S., Hoshimo, A., Tilley, R.D., Manome, Y., Hirakuri, K., and Yamamoto, K.: Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration. Nanotechnology 19, 1 (2008).CrossRefGoogle ScholarPubMed
Bhattacharjee, S., de Haan, L.H.J., Evers, N.M., Jiang, X., Marcelis, A.T.M., Zuilhof, H., Rietjens, I.M.C.M., and Alink, G.M.: Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part. Fibre Toxicol. 7, 25 (2010).CrossRefGoogle ScholarPubMed
Gu, X.L., Howell, S.B., and Sailor, M.J.: Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. ACS Nano 5, 3651 (2011).Google Scholar