Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T04:26:42.920Z Has data issue: false hasContentIssue false

An investigation of the invariant reactions in the BiPbSrCaCuO system

Published online by Cambridge University Press:  31 January 2011

Libin Liu
Affiliation:
Department of Materials Science and Engineering, Central South University of Technology, Changsha, Hunan 410083, People's Republic of China
Zhanpeng Jin
Affiliation:
Department of Materials Science and Engineering, Central South University of Technology, Changsha, Hunan 410083, People's Republic of China
Get access

Abstract

The phases present around the (Bi, Pb)2Sr2Ca2Cu3Ox (2223) phase between 830–880 °C have been studied by x-ray diffraction (XRD) and electron probe microanalysis (EPMA) methods. The decomposition and melting temperatures of the 2223 phase in these samples have been measured by the differential thermal analysis (DTA) method. Partial substitution of Bi with Pb (Pb: Bi = 3: 22) does not change the 850 °C phase relations around 2223 phase. 2223 decomposes to liquid, Sr7Ca7Cu24O41 (7724), and Ca2CuO3 at 875 °C. The invariant reactions (degree of freedom is zero) among 2223, 7724, Ca2CuO3, CuO, Bi2Sr2CaCu2O8 (2212), and liquid were proposed to be L + 7724 + Ca2CuO3 → 2223 + 2212, L + 7724 + Ca2CuO3 → 2223 + CuO, L + 7724 → 2223 + 2212 + CuO. The reaction temperatures were estimated to be 860 °C, 860 °C, and 854 °C, respectively. An invariant reaction scheme and a tentative liquidus projection were sketched out.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).CrossRefGoogle Scholar
2.Hong, B., Hahn, J., and Mason, T.O., J. Am. Ceram. Soc. 74, 1045 (1991).CrossRefGoogle Scholar
3.Suzuki, R. O., Kambara, S., Tsuchida, H., and Ono, K., 2nd. Int. Symp. on Superconductivity (ISS89), Tsukuba, Japan (1989).Google Scholar
4.Schulze, K., Majewski, P., Hettich, B., and Petzow, G., Z. Metallkd. 81, 836 (1990).Google Scholar
5.Roth, R. S., “User's Aspects of Phase Equilibria for Superconductor,” personal communication.Google Scholar
6.Ikeda, Y., Ito, H., Shimomura, S., Hiroi, Z., Takano, M., Bando, Y., Takada, J., Oda, K., Kitaguki, H., and Miura, Y., Physica C 190, 18 (1991).CrossRefGoogle Scholar
7.Suzuki, R. O., Bohac, P. and Cauckler, L.J., J. Am. Ceram. Soc. 75, 2833 (1992); 77, 81 (1994).CrossRefGoogle Scholar
8.Heeb, B., Bohac, P., and Cauckler, L.J., Proc. 95th Annual Meeting and Exposition, Am. Ceram. Soc., Cincinnati, OH (1993), p. 18.Google Scholar
9.Koyama, S., Endo, U., and Kawai, T., Jpn. J. Appl. Phys. 27, L1861 (1988).CrossRefGoogle Scholar
10.Oka, Y., Yamamato, N., Kitaguchi, H., Oda, K., and Takada, J., Jpn. J. Appl. Phys. 28, L211 (1989); 28, L801 (1989).Google Scholar
11.Wong-Ng, W., Chiang, C.K., Freiman, S.W., Cook, L.P., and Hill, M.D., Am. Ceram. Soc. Bull. 71, 1261 (1992).Google Scholar
12.Oh, S. S. and Osamura, K., Supercond. Sci. Technol. 4, 239 (1991).CrossRefGoogle Scholar
13.Guire, M. R. D., Bansal, N. P., Farrell, D. E., Finan, V., Kim, C. J., Hills, B. J., and Allen, C. J., Physica C 179, 333 (1991).CrossRefGoogle Scholar
14.Zorn, G., Seebacher, B., Jobst, B., and Göbel, H., Physica C 177, 494 (1991).CrossRefGoogle Scholar
15.Strobel, P., Tolédano, J. C., Morin, D., Schneck, J., Vacquier, G., Monnereu, O., Primo, J., and Fournier, T., Physica C 201, 27 (1992).CrossRefGoogle Scholar
16.Liu, L. B. and Jin, Z. P., Metallkd, Z.. (In press).Google Scholar
17.Cima, M.J., Jiang, X. P., Chow, H.M., Haggerty, J.S., Flemings, M.C., Brody, H.D., Laudise, R. A., and Johnson, D.W., J. Mater. Res. 5, 1834 (1990).CrossRefGoogle Scholar