Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T01:42:33.488Z Has data issue: false hasContentIssue false

An experimental study of the temperature and stoichiometry dependence of diamond growth in low pressure flat flames

Published online by Cambridge University Press:  03 March 2011

J.S. Kim
Affiliation:
Mechanical Engineering Department, Stanford University, Stanford, California 94305–3032
M.A. Cappelli*
Affiliation:
Mechanical Engineering Department, Stanford University, Stanford, California 94305–3032
*
a)Author to whom all correspondence should be sent.
Get access

Abstract

A study of the temperature and stoichiometry dependence of diamond synthesis in low pressure premixed acetylene-oxygen flames is presented. A specially designed low pressure flat flame operating at 40 Torr is employed to deposit diamond films uniformly over areas of at least 2 cm2. Under optimized conditions of substrate temperatures and flame equivalence ratios, high quality translucent diamond that is well faceted is synthesized exhibiting first-order Raman fullwidths (half maximum) of about 2.5 cm−1. Diamond growth rates under these optimum conditions are approximately 4 μm/h. The film growth rate is found to drop off substantially at high substrate temperatures, with little or no carbon deposited beyond a temperature of 1070 °C. The growth behavior in response to changes in flame equivalence ratio and substrate temperature is discussed in terms of the possible role that oxygen-containing species may have on surface chemistry. The results described here are also used to project a base cost for manufacturing diamond under these process conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hirose, Y. and Mitsuizumi, M., New Diamond 4, 34 (1988).Google Scholar
2Cappelli, M. A. and Paul, P. H., J. Appl. Phys. 67, 2596 (1990).CrossRefGoogle Scholar
3Murayama, M. and Uchida, K., Combustion and Flame 91, 239 (1992).CrossRefGoogle Scholar
4McCarty, K. F., Meeks, E., Kee, R. J., and Lutz, A. E., Appl. Phys. Lett. 63, 1498 (1993).CrossRefGoogle Scholar
5Cooper, J. A. Jr. and Yarbrough, W. A., Diamond Optics, SPIE 1325, 41 (1990).Google Scholar
6Glumac, N. G. and Goodwin, D. G., Mater. Lett. 18, 119 (1993).CrossRefGoogle Scholar
7Kim, J. S. and Cappelli, M. A., J. Appl. Phys. 72, 5461 (1992).CrossRefGoogle Scholar
8Kim, J. S. and Cappelli, M. A., Proc. 3rd Int. Symp. Diamond and Related Materials (The Electrochemical Society, Pennington, NJ, 1993), p. 455.Google Scholar
9Meeks, E., Kee, R. J., Dandy, D. S., and Coltrin, M. E., Combustionand Flame 92, 144 (1993).CrossRefGoogle Scholar
10Harris, S. J., Appl. Phys. Lett. 56, 2290 (1990).CrossRefGoogle Scholar
11Johnson, C. E., Hasting, M. A. S., and Weimer, W. A., J. Mater. Res. 5, 2320 (1990).CrossRefGoogle Scholar
12Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
13Piano, L. S. and Adar, F., Proc. SPIE 822, 52 (1987).Google Scholar
14Yoshikawa, M., Katagiri, G., Ishada, H., Ishitani, A., and Akamatsu, T., Appl. Phys. Lett. 52, 1639 (1988).CrossRefGoogle Scholar
15Hanssen, L. M., Snail, K. A., Carrington, W. A., Butler, J. E., Kellog, S., and Oakes, D. B., Thin Solid Films 196, 271 (1991).CrossRefGoogle Scholar
16Hanssen, L. M., Carrington, W. A., Butler, J. E., and Snail, K. A., Mater. Lett. 7, 289 (1988).CrossRefGoogle Scholar
17Cappelli, M. A. and Loh, M. H., Diamond Relat. Mater. 3, 417 (1994).CrossRefGoogle Scholar
18Howard, W. N., Spear, K. E., and Frenklach, M., Appl. Phys. Lett. 63, 2641 (1993).CrossRefGoogle Scholar
19Hirose, Y., Amanuma, S., and Komakim, K., J. Appl. Phys. 68, 6401 (1990).CrossRefGoogle Scholar
20Kweon, D-W., Lee, J-Y., and Kim, D., J. Appl. Phys. 69, 8329 (1991).CrossRefGoogle Scholar
21Kondoh, E., Ohta, T., Mitomo, T., and Ohtsuka, K., Appl. Phys. Lett. 59, 488 (1991).CrossRefGoogle Scholar
22Evans, T. and Phaal, C., Proc. 5th Biennial Conference on Carbon (The Pennsylvania State University, University Park, PA, 1962), p. 147.CrossRefGoogle Scholar
23Kosky, P. G. and McAtee, D.S., Mater. Lett. 8, 369 (1989).CrossRefGoogle Scholar
24Ravi, K. V., Koch, C. A., and Olson, D., Proc. 2nd Int. Conf. Applications of Diamond Films and Related Materials, edited by Yoshikawa, M., Murakawa, M., Tzeng, Y., and Yarbrough, W. A. (MYU, Tokyo, 1993), p. 491.Google Scholar
25This cost translates to a carbon capture efficiency of less than 0.005%. This is significantly lower than that of arcjet and microwave sources because the vast majority of the carbon goes into products of combustion (CO2 and CO).Google Scholar
26Busch, J. V. and Dismukes, J. P., Diamond Relat. Mater. 3, 295 (1994).CrossRefGoogle Scholar
27Kim, J. S. and Cappelli, M. A., Appl. Phys. Lett., in press.Google Scholar