Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T19:00:19.977Z Has data issue: false hasContentIssue false

An evaluation of phase separated, self-assembled LaMnO3-MgO nanocomposite films directly on IBAD-MgO as buffer layers for flux pinning enhancements in YBa2Cu3O7-δ coated conductors

Published online by Cambridge University Press:  31 January 2011

Özgür Polat
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; and Department of Physics & Astronomy, The University of Tennessee, Knoxville, Tennessee 37996
Sylvester Cook
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
James R. Thompson
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; and Department of Physics & Astronomy, The University of Tennessee, Knoxville, Tennessee 37996
Amit Goyal
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Venkat Selvamanickam
Affiliation:
SuperPower, Inc., Schenectady, New York 12304
Get access

Abstract

Technological applications of high temperature superconductors (HTS) require high critical current density, Jc, under operation at high magnetic field strengths. This requires effective flux pinning by introducing artificial defects through creative processing. In this work, we evaluated the feasibility of mixed-phase LaMnO3:MgO (LMO:MgO) films as a potential cap buffer layer for the epitaxial growth and enhanced performance of YBa2Cu3O7-δ (YBCO) films. Such composite films were sputter deposited directly on IBAD-MgO templates (with no additional homo-epitaxial MgO layer) and revealed the formation of two phase-separated, but at the same time vertically aligned, self-assembled composite nanostructures that extend throughout the entire thickness of the film. The YBCO coatings deposited on these nanostructured cap layers showed correlated c-axis pinning and improved in-field Jc performance compared to those of YBCO films fabricated on standard LMO buffers. Microstructural characterization revealed additional extended disorder in the YBCO matrix. The present results demonstrate the feasibility of novel and potentially practical approaches in the pursuit of more efficient, economical, and high performance superconducting devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bednorz, G., Muller, K.A.Possible high-T c superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189 (1986)CrossRefGoogle Scholar
2.Paranthaman, M.P., Selvamanickam, V.Flux pinning and AC loss in second generation high temperature superconductor wiresFlux Pinning and AC Loss Studies on YBCO Coated Conductors edited by M.P. Paranthaman and V. Selvamanickam (Nova Science Publishers Inc, New York 2007)310Google Scholar
3.MacManus-Driscoll, J.L., Foltyn, S.R., Jia, Q.X., Wang, H., Serquis, A., Civale, L., Maiorov, B., Hawley, M.E., Maley, M.P., Peterson, D.E.Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7-x+BaZrO3. Nat. Mater. 3, 439 (2004)CrossRefGoogle Scholar
4.Goyal, A., Kang, S., Leonard, K.J., Martin, P.M., Gapud, A.A., Varela, M., Paranthaman, M., Ijaduola, A.O., Specht, E.D., Thompson, J.R., Christen, D.K., Pennycook, S.J., List, F.A.Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7-δ films. Supercond. Sci. Technol. 18, 1533 (2005)CrossRefGoogle Scholar
5.Kang, S., Goyal, A., Li, J., Gapud, A.A., Martin, P.M., Heatherly, L., Thompson, J.R., Christen, D.K., List, F.A., Paranthaman, M., Lee, D.F.High performance high-T c superconducting wires. Science 311, 1911 (2006)CrossRefGoogle ScholarPubMed
6.Varanasi, C.V., Barnes, P.N., Burke, J., Brunke, L., Maartense, I., Haugan, T.J., Stinzianni, E.A., Dunn, K.A., Haldar, P.Flux pinning enhancement in YBa2Cu3O7-x films with BaSnO3 nanoparticles. Supercond. Sci. Technol. 19, L37 (2006)Google Scholar
7.Haugan, T., Barnes, P.N., Wheeler, R., Meisenkothen, F., Sumption, M.Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7-x superconductor. Nature 430, 867 (2004)CrossRefGoogle ScholarPubMed
8.Jia, Q.X., Foltyn, S.R., Arendt, P.N., Smith, J.F.High-temperature superconducting thick films with enhanced supercurrent carrying capability. Appl. Phys. Lett. 80, 1601 (2002)CrossRefGoogle Scholar
9.Foltyn, S.R., Wang, H., Civale, L., Maiorov, B., Li, Y., Maley, M.P., MacManus-Driscoll, J.L.Overcoming the barrier to 1000 A/cm width superconducting coatings. Appl. Phys. Lett. 87, 162505 (2005)CrossRefGoogle Scholar
10.Gapud, A.A., Kumar, D., Viswanathan, S.K., Cantoni, C., Varela, M., Abiade, J., Pennycook, S.J., Christen, D.K.Enhancement of flux pinning in YBa2Cu3O7-x thin films embedded with epitaxially grown Y2O3 nanostructures using a multi-layering process. Supercond. Sci. Technol. 18, 1502 (2005)Google Scholar
11.Kwon, C., Kinder, L.R., Gim, Y., Fan, Y., Coulter, J.Y., Maley, M.P., Foltyn, S.R., Peterson, D.E., Jia, Q.X.Fabrication and characterization of (rare-earth)-barium-copper-oxide (RE123 with RE = Y, Er, and Sm) films. IEEE Trans. Appl. Supercond. 9, 1575 (1999)Google Scholar
12.Pradhan, A.K., Muralidhar, M., Murakami, M., Koshizuki, N.Studies of flux pinning behaviour in melt processed ternary (Nd-Eu-Gd)Ba2Cu3Oy superconductors. Supercond. Sci. Technol. 13, 761 (2000)CrossRefGoogle Scholar
13.Konishi, M., Takahashi, K., Ibi, A., Muroga, T., Miyata, S., Kobayashi, H., Yamada, Y., Shiohara, Y.J c-B characteristics of RE-Ba-Cu-O (RE = Sm, Er, and [Gd,Er]) films on PLD-CeO2/IBAD-GZO/metal substrates. Physica C 445, 633 (2006)CrossRefGoogle Scholar
14.Cai, B., Holzapfel, B., Hanisch, J., Fernandez, L., Schultz, L.Magnetotransport and flux pinning characteristics in RBa2Cu3O7-δ (R = Gd, Eu, Nd) and (Gd1/3Eu1/3Nd1/3)Ba2Cu3O7-δ high-T c superconducting thin films on SrTiO3 (100). Phys. Rev. B 69, 104531 (2004)Google Scholar
15.Kwon, C., Kinder, L.R., Fan, Y., Gim, Y., Findikoglu, A.T., Bingert, J.F., Coulter, J.Y., Foltyn, S.R., Peterson, D.E., Jia, Q.X.Improved superconducting properties of SmBa2Cu3O7-δ films using YBa2Cu3O7-δ buffer layers. Philos. Mag. B 80, 45 (2000)CrossRefGoogle Scholar
16.Aytug, T., Paranthaman, M., Gapud, A.A., Kang, S., Christen, H.M., Leonard, K.J., Martin, P.M., Thompson, J.R., Christen, D.K., Meng, R., Rusakova, I., Chu, C.W., Johansen, T.H.Enhancement of flux pinning and critical currents in Ba2Cu3O7-δ films by nanoscale iridium pretreatment of substrate surfaces. J. Appl. Phys. 98, 114309 (2005)CrossRefGoogle Scholar
17.Crisan, A., Fujiwara, S., Nie, J.C., Sundaresan, A., Ihara, HSputtered nanodots: A costless method for inducing effective pinning centers in superconducting films. Appl. Phys. Lett. 79, 4547 (2001)CrossRefGoogle Scholar
18.Matsumoto, K., Horide, T., Osamura, K., Mukaida, M., Yoshida, Y., Ichinose, A., Horii, S.Enhancement of critical current density of YBCO films by introduction of artificial pinning centers due to the distributed nano-scaled Y2O3 islands on substrates. Physica C 412, 1267 (2004)Google Scholar
19.Mele, P., Matsumoto, K., Horide, T., Miura, O., Ichinose, A., Mukaida, M., Yoshida, Y., Horii, S.Critical current enhancement in PLD YBa2Cu3O7-x films using artificial pinning centers. Physica C 445, 648 (2006)CrossRefGoogle Scholar
20.Teichert, C., Lagally, M.G., Peticolas, L.J., Bean, J.C., Tersoff, J.Stress-induced self-organization of nanoscale structures in SiGe/Si multilayer films. Phys. Rev. B 53, 16334 (1996)CrossRefGoogle ScholarPubMed
21.Xie, Q., Madhukar, A., Chen, P., Kobayashi, N.P.Vertically self-organized InAs quantum box islands on GaAs(100). Phys. Rev. Lett. 75, 2542 (1995)CrossRefGoogle Scholar
22.Wang, L.G., Kratzer, P., Scheffler, M., Moll, N.Formation and stability of self-assembled coherent islands in highly mismatched heteroepitaxy. Phys. Rev. Lett. 82, 4042 (1999)CrossRefGoogle Scholar
23.Gai, Z., Wu, B., Pierce, J.P., Farnan, G.A., Shu, D., Wang, M., Zhang, Z., Shen, J.Self-assembly of nanometer-scale magnetic dots with narrow size distributions on an insulating substrate. Phys. Rev. Lett. 89, 235502 (2002)CrossRefGoogle Scholar
24.Lebedev, O.I., Verbeeck, J., Van Tendeloo, G., Shapoval, O., Belenchuk, A., Moshnyaga, V., Damashcke, B., Samwer, K.Structural phase transition and stress accommodation in (La0.7Ca0.3MnO3)(1-X): (MgO)(X) composite films. Phys. Rev. B 66, 104421 (2002)Google Scholar
25.Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., Ramesh, R.Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661 (2004)Google Scholar
26.MacManus-Driscoll, J.L., Zerrer, P., Wang, H., Yang, H., Yoon, J., Fouchet, A., Yu, R., Blamire, M.G., Jia, Q.X.Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 7, 314 (2008)CrossRefGoogle ScholarPubMed
27.Zheng, H., Straub, F., Zhan, Q., Yang, P., Hsieh, W.K., Zavaliche, F., Chu, Y.H., Dahmen, U., Ramesh, R.Self-assembled growth of BiFeO3-CoFe2O4 nanostructures. Adv. Mater. 18, 2747 (2006)Google Scholar
28.Gao, Y.F., Meng, J.Y., Goyal, A., Stocks, G.M.Spatial ordering and anisotropy in surface stress domains and nanostructural evolution. JOM 60, 54 (2008)CrossRefGoogle Scholar
29.Xiong, X.M., Lenseth, K.P., Reeves, J.L., Rar, A., Qiao, Y.F., Schmidt, R.M., Chen, Y.M., Li, Y.J., Xie, Y.Y., Selvamanickam, V.High throughput processing of long-length IBAD MgO and epi-buffer templates at SuperPower. IEEE Trans. Appl. Supercond. 17, 3375 (2007)Google Scholar
30.Wee, S.H., Shin, J., Cantoni, C., Meyer, H.M., Cook, S., Zuev, Y.L., Specht, E., Xiong, X.M., Paranthaman, M.P., Selvamanickam, V., Goyal, A.Phase-separated, epitaxial, nanostructured LaMnO3+MgO composite cap layer films for propagation of pinning defects in YBa2Cu3O7-x coated conductors. Appl. Phys. Express 2, 063008 (2009)CrossRefGoogle Scholar
31.Paranthaman, M., Aytug, T., Christen, D.K., Arendt, P.N., Foltyn, S.R., Groves, J.R., Stan, L., DePaula, R.F., Wang, H., Holesinger, T.G.Growth of thick YBa2Cu3O7-δ films carrying a critical current of over 230 A/cm on single LaMnO3-buffered ion-beam-assisted deposition MgO substrates. J. Mater. Res. 18, (9)2055 (2003)CrossRefGoogle Scholar
32.Polat, O., Aytug, T., Paranthaman, M., Kim, K., Zhang, Y., Cantoni, C., Zuev, Y.L., Goyal, A., Thompson, J.R., Christen, D.K., Xiong, X., Selvamanickam, V.Properties of YBCO on LaMnO3-capped IBAD MgO-templates without homo-epitaxial MgO layer. IEEE Trans. Appl. Supercond. 19, 3315 (2009)Google Scholar
33.Polat, O., Aytug, T., Paranthaman, M., Kim, K., Zhang, Y., Thompson, J.R., Christen, D.K., Xiong, X., Selvamanickam, V.Direct growth of LaMnO3 cap buffer layers on IBAD-MgO for simplified template-based YBCO coated conductors. J. Mater. Res. 23, 3021 (2008)CrossRefGoogle Scholar
34.Pennycook, S.J., Jesson, D.E.High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 14 (1991)Google Scholar
35.Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H., Pennycook, S.J.Direct sub-Ångstrom imaging of a crystal lattice. Science 305, 1741 (2004)CrossRefGoogle ScholarPubMed
36.Zhang, X.F., Miller, D.J., Talvacchio, J.Control of meandering grain boundary configurations in YBa2Cu3Oy bicrystal thin films based on deposition rate. J. Mater. Res. 11, 2440 (1996)Google Scholar
37.Gray, K.E., Field, M.B., Miller, D.J.Explanation of low critical currents in flat, bulk versus meandering, thin-film [001] tilt bicrystal grain boundaries in YBa2Cu3O7. Phys. Rev. B 58, 9543 (1998)Google Scholar