Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-15T21:15:06.915Z Has data issue: false hasContentIssue false

An auto-combustion synthesis and luminescence properties of polyhedral YVO4: Ln3+ (Ln = Eu, Sm, Yb/Er, Yb/Tm) microcrystals

Published online by Cambridge University Press:  14 October 2019

Shanshan Yang
Affiliation:
State Key Laboratory Base of Functional Materials and Its Preparation Science, Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo University, Ningbo 315211, People’s Republic of China
Linwen Jiang*
Affiliation:
State Key Laboratory Base of Functional Materials and Its Preparation Science, Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo University, Ningbo 315211, People’s Republic of China; and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
Junli Feng
Affiliation:
Shenzhen Customs, Industrial Products Inspection Technology Center, Shenzhen 518067, People’s Republic of China
Jiangtao Li
Affiliation:
State Key Laboratory Base of Functional Materials and Its Preparation Science, Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo University, Ningbo 315211, People’s Republic of China
Xin Chen
Affiliation:
State Key Laboratory Base of Functional Materials and Its Preparation Science, Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo University, Ningbo 315211, People’s Republic of China
Mingyu He
Affiliation:
State Key Laboratory Base of Functional Materials and Its Preparation Science, Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo University, Ningbo 315211, People’s Republic of China
Hongbing Chen
Affiliation:
State Key Laboratory Base of Functional Materials and Its Preparation Science, Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo University, Ningbo 315211, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Polyhedral YVO4: Ln3+ (Ln = Eu, Sm, Yb/Er, Yb/Tm) microcrystals were fabricated via a facile sol–gel auto-combustion method using NH4VO3 as vanadium source in the presence of glycine. The X-ray diffraction patterns were well matched with pure YVO4, and the doped lanthanide ions did not change the host structure. The YVO4 microcrystals annealed from 500 to 1000 °C for 3 h were polyhedral and ranged in particle size from 0.1 to 2 μm. The luminescence properties of YVO4: Ln3+ (Ln = Eu, Sm, Yb/Er, Yb/Tm) samples indicated that all of the YVO4: Ln3+ samples exhibited typical emission spectra of Ln3+ cations, suggesting that the Ln3+ cations were well doped in YVO4 and could be excited efficiently through matrix absorption. In addition, the corresponding mechanisms of emission and energy transfer in the YVO4: Ln3+ are proposed.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhou, Y. and Yan, B.: RE2(MO4)3: Ln3+ (RE = Y, La, Gd, Lu; M = W, Mo; Ln = Eu, Sm, Dy) microcrystals: Controlled synthesis, microstructure and tunable luminescence. CrystEngComm 15, 5694 (2013).CrossRefGoogle Scholar
Liu, Y.L., Xiong, H.L., Zhang, N.N., Leng, Z.H., Li, R.Q., and Gan, S.C.: Microwave synthesis and luminescent properties of YVO4: Ln3+ (Ln = Eu, Dy and Sm) phosphors with different morphologies. J. Alloys Compd. 653, 126134 (2015).CrossRefGoogle Scholar
Cho, Y.S. and Huh, Y.D.: Photoluminescence properties of YVO4: Eu nanophosphors prepared by the hydrothermal reaction. Bull. Korean Chem. Soc. 31, 2368 (2010).CrossRefGoogle Scholar
Yan, B. and Wu, J.H.: YVO4: RE3+ (RE = Eu, Sm, Dy, Er) nanophosphors: Facile hydrothermal synthesis, microstructure, and photoluminescence. J. Mater. Res. 24, 3375 (2009).CrossRefGoogle Scholar
Yu, H.Q., Lan, X.J., Tang, Y.N., and Wang, H.D.: Up-conversion luminescence properties of YVO4: Er3+/Yb3+ nanospindles prepared by a P123-assisted ultrasonic chemistry route. J. Mater. Sci.: Mater. Electron. 29, 1651 (2017).Google Scholar
Bonar, J.R., Vermelho, M.V.D., McLaughlin, A.J., Marques, P.V.S., Aitchison, J.S., Martins-Filho, J.F., Bezerra, A.G. Jr., Gomes, A.S.L., and de Araujo, C.B.: Blue light emission in thulium doped silica-on-silicon waveguides. Opt. Commun. 141, 137 (1997).CrossRefGoogle Scholar
Li, G.C., Chao, K., Peng, H.R., and Chen, K.Z.: Hydrothermal synthesis and characterization of YVO4 and YVO4: Eu3+ nanobelts and polyhedral micron crystals. J. Phys. Chem. 112, 6228 (2008).Google Scholar
Yang, L.S., Peng, S.Y., Zhao, M.L., and Yu, L.S.: A facile strategy to prepare YVO4: Eu3+ colloid with novel nanostructure for enhanced optical performance. Appl. Surf. Sci. 473, 885 (2019).CrossRefGoogle Scholar
Zhang, J., Ma, H.L., Xie, C.D., and Peng, K.C.: Suppression of intensity noise of a laser-diode-pumped single-frequency Nd: YVO4 laser by optoelectronic control. Appl. Opt. 42, 1068 (2003).CrossRefGoogle ScholarPubMed
Cho, Y.S. and Huh, Y.D.: Preparation of transparent red-emitting YVO4: Eu nanophosphor suspensions. Bull. Korean Chem. Soc. 32, 335 (2011).CrossRefGoogle Scholar
Pollnau, M., Gamelin, D.R., Lüthi, S.R., and Güdel, H.U.: Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 61, 3337 (2000).CrossRefGoogle Scholar
Huignard, A., Gacoin, T., and Boilot, J.P.: Synthesis and luminescence properties of colloidal YVO4: Eu phosphors. Chem. Mater. 12, 1090 (2000).CrossRefGoogle Scholar
Zhou, Y., Yan, B., and He, X.H.: Controlled synthesis and up/down-conversion luminescence of self-assembled hierarchical architectures of monoclinic AgRE(WO4)2: Ln3+ (RE = Y, La, Gd, Lu; Ln = Eu, Tb, Sm, Dy, Yb/Er, Yb/Tm). J. Mater. Chem. C 2, 848 (2014).CrossRefGoogle Scholar
Tang, L. and Chen, N.: White light emitting YVO4: Eu3+, Tm3+, Dy3+ nanometer and submicrometer-sized particles prepared by an ion exchange method. Ceram. Int. 42, 302 (2016).CrossRefGoogle Scholar
Chen, X.S., Nguyen, T., Luu, Q., and Di Bartolo, B.: Concentration dependence of visible up-conversion luminescence in the laser crystal Gd3Ga5O12 doped with erbium. J. Lumin. 85, 295 (2000).CrossRefGoogle Scholar
Yu, M., Lin, J., Wang, Z., Fu, J., Wang, S., Zhang, H.J., and Han, Y.C.: Fabrication, patterning, and optical properties of nanocrystalline YVO4: A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol–gel soft lithography. Chem. Mater. 14, 2224 (2002).CrossRefGoogle Scholar
Yu, H.Q., Li, P., Song, Y., Sheng, C.C., Li, Y., Wu, Y.B., and Chen, B.J.: Preparation and luminescent properties of one-dimensional YVO4: Eu nanocrystals. J. Mater. Sci.: Mater. Electron. 27, 2608 (2015).Google Scholar
Wang, G.F., Qin, W.P., Zhang, D.S., Wang, L.L., Wei, G.D., Zhu, P.F., and Kim, R.: Enhanced photoluminescence of water soluble YVO4: Ln3+ (Ln = Eu, Dy, Sm, and Ce) nanocrystals by Ba2+ doping. J. Phys. Chem. C 12, 17042 (2008).CrossRefGoogle Scholar
Zhu, Y.S., Xu, W., Li, C.Y., Zhang, H.Z., Dong, B., Xu, L., Xu, S., and Song, H.W.: Broad white light and infrared emission bands in YVO4: Yb3+, Ln3+ (Ln3+ = Er3+, Tm3+, or Ho3+). Appl. Phys. Express 5, 092701 (2012).CrossRefGoogle Scholar
Riwotzki, K. and Haase, M.: Wet-chemical synthesis of doped colloidal nanoparticles: YVO4: Ln (Ln = Eu, Sm, Dy). J. Phys. Chem. B 102, 10129 (1998).CrossRefGoogle Scholar
Yi, G.S., Lu, H.C., Zhao, S.Y., Ge, Y., Yang, W.J., Chen, D.P., and Guo, L.H.: Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett. 4, 2191 (2004).CrossRefGoogle Scholar
Buissette, V., Huignard, A., Gacoin, T., Boilot, J.P., Aschehoug, P., and Vianaz, B.: Luminescence properties of YVO4: Ln( Ln = Nd, Yb, and Yb–Er) nanoparticles. Surf. Sci. 532, 444 (2003).CrossRefGoogle Scholar
Wang, M., Lu, G.Z., Wang, Y.Q., Guo, Y.L., and Guo, Y.: Preparation and photoluminescence properties of hexagonal mesoporous YVO4: Eu3+ ellipsoids. Microporous Mesoporous Mater. 207, 163 (2015).CrossRefGoogle Scholar
Gai, S.L., Li, C.X., Yang, P.P., and Lin, J.: Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 114, 2343 (2014).CrossRefGoogle ScholarPubMed
Erdei, S., Ainger, F.W., Ravichandran, D., White, W.B., and Cross, L.E.: Preparation of Eu3+: YVO4 red and Ce3+, Tb3+: Phosphors by hydrolyzed colloid reaction (HCR) technique. Mater. Lett. 30, 389 (1997).CrossRefGoogle Scholar
Jiang, L.W., Yang, S.S., Zheng, M.Y., Wu, A.H., and Chen, H.B.: Synthesis of polycrystalline CoFe2O4 and NiFe2O4 powders by auto-combustion method using a novel amino-based gel. Mater. Res. Express 4, 126102 (2017).CrossRefGoogle Scholar
Jiang, L.W., Yang, S.S., Zheng, M.Y., Wu, A.H., and Chen, H.B.: Low-temperature combustion synthesis of nanocrystalline HoFeO3 powders via a sol–gel method using glycin. Ceram. Int. 38, 3667 (2012).CrossRefGoogle Scholar
Yu, M., Lin, J., and Fang, J.: Silica spheres coated with YVO4: Eu3+ layers via sol–gel process: A simple method to obtain spherical core–shell phosphors. Chem. Mater. 17, 1783 (2005).CrossRefGoogle Scholar
Liu, Y.L., Yang, C.M., Xiong, H.L., Zhang, N.N., Leng, Z.H., Li, R.Q., and Gan, S.C.: Surfactant assisted synthesis of the YVO4: Ln3+ (Ln = Eu, Dy, Sm) phosphors and shape-dependent luminescence properties. Colloids Surf., A 502, 139 (2016).CrossRefGoogle Scholar
Zhang, H.W., Fu, X.Y., Niu, S.Y., Sun, G.Q., and Xin, Q.: Low temperature synthesis of nanocrystalline YVO4: Eu via polyacrylamide gel method. J. Solid State Chem. 177, 2649 (2004).CrossRefGoogle Scholar
Zhang, H.W., Fu, X.Y., Niu, S.Y., and Xin, Q.: Synthesis and luminescent properties of nanosized YVO4: Ln (Ln = Sm, Dy). J. Alloys Compd. 457, 61 (2008).CrossRefGoogle Scholar
Jiang, L.W., Yang, S.S., Zheng, M.Y., Wu, A.H., and Chen, H.B.: Synthesis and magnetic properties of nanocrystalline Gd3Fe5O12 and GdFeO3 powders prepared by sol–gel auto-combustion method. Mater. Res. Bull. 104, 92 (2018).CrossRefGoogle Scholar
Jiang, L.W., Liu, W.L., Xu, J., Liu, Q., Wu, A.H., Luo, L.Q., and Zhang, H.: Rapid synthesis of DyFeO3 nanopowders by auto-combustion of carboxylate-based gels. J. Sol-Gel Sci. Technol. 61, 527 (2011).CrossRefGoogle Scholar
Tian, L.H. and Mho, S.: Enhanced photoluminescence of YVO4: Eu3+ by codoping the Sr2+, Ba2+ or Pb2+ ion. J. Lumin. 122, 99 (2007).CrossRefGoogle Scholar
Zhou, Y., Chen, H.H., and Yan, B.: An Eu3+ post-functionalized nanosized metal–organic framework for cation exchange-based Fe3+-sensing in an aqueous environment. J. Mater. Chem. A 2, 13691 (2014).CrossRefGoogle Scholar
Liang, X., Kuang, S., and Li, Y.D.: Solvothermal synthesis and luminescence of nearly monodisperse LnVO4 nanoparticles. J. Mater. Res. 26, 1168 (2011).CrossRefGoogle Scholar
Fu, Y.H., Jiu, H.F., Zhang, L.X., Sun, Y.X., and Wang, Y.Z.: Template-directed synthesis and luminescence properties of YVO4: Eu hollow microspheres. Mater. Lett. 91, 265 (2013).CrossRefGoogle Scholar
Xu, Z.H., Kang, X.J., Li, C.X., Hou, Z.Y., Zhang, C.M., Yang, D.M., Li, G.G., and Lin, J.: Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: Hydrothermal synthesis, growing mechanism, and luminescent properties. Inorg. Chem. 49, 6706 (2010).CrossRefGoogle Scholar
Cavalli, E., Angiuli, F., Belletti, A., and Boutinaud, P.: Luminescence spectroscopy of YVO4: Ln3+, Bi3+ (Ln3+= Eu3+, Sm3+, Dy3+) phosphors. Opt. Mater. 36, 1642 (2014).CrossRefGoogle Scholar
Zhou, Y., He, X.H., and Yan, B.: Self-assembled RE2(MO4)3: Ln3+ (RE = Y, La, Gd, Lu; M = W, Mo; Ln = Yb/Er, Yb/Tm) hierarchical microcrystals: Hydrothermal synthesis and up-conversion luminescence. Opt. Mater. 36, 602 (2014).CrossRefGoogle Scholar