Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T02:31:22.206Z Has data issue: false hasContentIssue false

An ab initio study of the ideal tensile and shear strength of single-crystal β–Si3N4

Published online by Cambridge University Press:  31 January 2011

Shigenobu Ogata
Affiliation:
Department of Mechanical Engineering and Systems and Handai Frontier Research Center, Graduate School of Osaka University, 2-1 Yamada-oka, Suita-shi, 565-0871, Osaka, Japan
Naoto Hirosaki
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba-Shi Ibaraki 305-0044, Japan
Cenk Kocer
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba-Shi Ibaraki 305-0044, Japan
Yoji Shibutani
Affiliation:
Department of Mechanical Engineering and Systems and Handai Frontier Research Center, Graduate School of Osaka University, 2-1 Yamada-oka, Suita-shi, 565-0871, Osaka, Japan
Get access

Abstract

In this study, the ideal tensile and shear strength of single-crystal β–Si3N4 was calculated using an ab initio density functional technique. The stress-strain curve of the silicon nitride polymorph was calculated from simulations of uniaxial strain deformation. In particular, the ideal strength calculated for an applied ∈11 tensile strain was estimated to be approximately 57 GPa. Recently, a good correlation was reported between the shear modulus of high-strength materials and the experimentally determined Vickers indentation hardness value. Using the reported correlation an estimate was made of the Vickers indentation hardness of single-crystal β–Si3N4: approximately 20.4 GPa.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mota, F. de Brito, Justo, J.F., and Fazzio, A., Phys. Rev. B 58, 8323 (1998).CrossRefGoogle Scholar
2.Grün, R., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 35, 800 (1979).CrossRefGoogle Scholar
3.Belkada, R., Shibayanagi, T., and Naka, M., J. Am. Ceram. Soc. 83, 2449 (2000).CrossRefGoogle Scholar
4.Liu, A.Y. and Cohen, M.L., Phys. Rev. B 41, 727 (1990).Google Scholar
5.Ogata, S., Kitagawa, H., and Hirosaki, N., in Proceedings of the 10th International Congress on Fracture, edited by Ravi-Chandar, K., Karihaloo, B.L., Kishi, T., Ritchie, R.O., Yokobori, A.T., Jr., and Yokobori, T. (Elsevier Science CD-ROM, ICF100514OR, 2001).Google Scholar
6.Ogata, S., Hirosaki, N., Kocer, C., and Kitagawa, H., Phys. Rev. B 64, 172102 (2001).CrossRefGoogle Scholar
7.Hirosaki, N., Ogata, S., Kocer, C., Kitagawa, H., and Nakamura, Y., Phys. Rev. B 65, 134110 (2002).CrossRefGoogle Scholar
8.Vanderbilt, P., Phys. Rev. B 41, 7892 (1990).CrossRefGoogle Scholar
9.Kresse, G. and Hafner, J., Phys. Rev. B 49, 14251 (1994).CrossRefGoogle Scholar
10.Kresse, G. and Furthm, J.üller, Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
11.Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
12.Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., and Fiolhais, C., Phys. Rev. B 46, 6671 (1992).CrossRefGoogle Scholar
13.Ceperley, D.M. and Alder, B.J., Phys. Rev. Lett. 45, 566 (1980).CrossRefGoogle Scholar
14.Monkhorst, H.J. and Pack, J.D., Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
15.Roundy, D. and Cohen, M.L., Phys. Rev. B 64, 212103 (2001).CrossRefGoogle Scholar
16.Ching, W-Y., Huang, M-Z., and Mo, S-D., J. Am. Ceram. Soc. 83, 780 (2000).CrossRefGoogle Scholar
17.Wendal, J.A. and Goddard, W.A. III, J. Chem. Phys. 97, 5048 (1992).CrossRefGoogle Scholar
18.Soignard, E., Somayazulu, M., Dong, J., Sankey, O.F., and McMillan, P.F., J. Phys.: Condens. Matter 13, 557 (2001).Google Scholar
19.Xu, Y-N. and Ching, W.Y., Phys. Rev. B 51, 17379 (1995).CrossRefGoogle Scholar
20.Ching, W-Y., Xu, Y-N., Gale, J.D., and Rühle, M., J. Am. Ceram. Soc. 81, 3189 (1998).CrossRefGoogle Scholar
21.Hay, J.C., Sun, E.Y., Pharr, G.M., Becher, P.F., and Alexander, K.B., J. Am. Ceram. Soc. 81, 2661 (1998).CrossRefGoogle Scholar
22.Teter, D.M., MRS Bull. 23, 22 (1998).CrossRefGoogle Scholar
23.Roundy, D., Krenn, C.R., Cohen, M.L., and Morris, J.W., Jr., Philos. Mag. A 81, 1725 (2001).CrossRefGoogle Scholar
24.Ogata, S., Li, J., and Yip, S., Science 298, 807 (2002).CrossRefGoogle Scholar
25.Yoshimura, M., Nishioka, T., Yamakawa, A., and Miyake, M., Ceram. Soc. Jpn. 103, 407 (1995).CrossRefGoogle Scholar
26.Ukyo, Y. and Wada, S., Seramikkusu Ronbunshi 97, 872 (1989).CrossRefGoogle Scholar
27.Yamamoto, T., Nishioka, T., Matunuma, K., Yamakawa, A., and Miyake, M., in Proceedings of the 1st International Symposium on the Science of Engineering Ceramics, Japan, 1991, edited by Kimura, S. and Niihara, K. (Ceram. Soc. Jpn., Tokyo, Japan, 1991), p. 115.Google Scholar
28.Hirosaki, N. and Akimune, Y., J. Am. Ceram. Soc. 76, 1892 (1993).CrossRefGoogle Scholar
29.Belkada, R., Kohyama, M., Shibayanagi, T., and Naka, M., Phys. Rev. B 65, 092104 (2002).CrossRefGoogle Scholar
30.Reimanis, I.E., Petrovic, J.J., Suematsu, H., and Mitchell, T.E., J. Am. Ceram. Soc. 79, 395 (1996).CrossRefGoogle Scholar