Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T01:26:43.476Z Has data issue: false hasContentIssue false

Alpha-recoil damage in titanite (CaTiSiO5): Direct observation and annealing study using high resolution transmission electron microscopy

Published online by Cambridge University Press:  08 February 2011

Gregory R. Lumpkin*
Affiliation:
Department of Geology, University of New Mexico, Albuquerque, New Mexico 87131
Ray K. Eby
Affiliation:
Department of Geology, University of New Mexico, Albuquerque, New Mexico 87131
Rodney C. Ewing
Affiliation:
Department of Geology, University of New Mexico, Albuquerque, New Mexico 87131
*
a)Current address: Australian Nuclear Science & Technology Organization, Lucas Heights Research Laboratories, New Illawarra Road, Lucas Heights, New South Wales, Australia.
Get access

Abstract

“Tracks” of alpha-recoil nuclei have been observed directly in titanite (CaTiSiO5). Recoil tracks in titanite are 4 to 6 nm in diameter and consist of a central aperiodic zone surrounded by a narrow (0–2 nm) outer zone that is essentially crystalline, but which exhibits modulated image contrast due to interstitial defects. Previous work has suggested that titanite is 2 to 3 times more sensitive to alpha-decay damage than other ceramic phases (e.g., zircon, ZrSiO4). We find, however, that track diameters in titanite are essentially the same as reported for other phases, including zircon (ZrSiO4), pyrochlore (NaCaTa2O6F), and zirconolite (CaZrTi2O7). An annealing study of titanite (300 to 700 °C, N2) shows a two-stage recovery process. Track diameter decreases at 400 °C. An intermediate phase develops at 500 °C, and nearly all tracks are epitaxially recrystallized. At 700 °C, all tracks and the intermediate phase are gone.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Silk, E. C. H. and Barnes, R. H., Philos. Mag. 4, 970 (1959).CrossRefGoogle Scholar
2Fleischer, R. L., Price, P. B., and Walker, R. M., Nuclear Tracks in Solids (University of California Press, Berkeley, CA, 1975), 605 pages.CrossRefGoogle Scholar
3Yada, K., Tanji, T., and Sunagawa, I., Physics and Chemistry of Minerals 7, 47 (1981).CrossRefGoogle Scholar
4Hurley, P. M. and Fairbairn, H. W., Geological Society of America Bulletin 64, 659 (1953).CrossRefGoogle Scholar
5Huang, W. H. and Walker, R. M., Science 155, 1103 (1967).CrossRefGoogle Scholar
6Lumpkin, G. R. and Ewing, R. C., Physics and Chemistry of Minerals 16, 2 (1988).CrossRefGoogle Scholar
7Ewing, R. C. and Headley, T. J., J. Nucl. Mater. 119, 102 (1983).CrossRefGoogle Scholar
8Chakoumakos, B. C., Murakami, T., Lumpkin, G. R., and Ewing, R. C., Science 236, 1556 (1987).CrossRefGoogle Scholar
9Hayward, P. J., Radioactive Waste Forms for the Future, edited by Lutze, W. and Ewing, R. C. (Elsevier North-Holland, Amsterdam, 1988), pp. 427493.Google Scholar
10Mackinnon, I. D. R., Lumpkin, G. R., and Deusen, S. B. Van, Microbeam Analysis–1986 edited by Romig, A. D. Jr and Chambers, W. F. (San Francisco Press, San Francisco, CA, 1986), p. 451.Google Scholar
11Higgins, J. B. and Ribbe, P. H., American Mineralogist 61, 878 (1976).Google Scholar
12Hawthorne, F. C., Groat, L. A., Raudsepp, M., Ball, N. A., Kimata, M., Spike, F. D., Gaba, R., Halden, N. M., Lumpkin, G. R., Ewing, R. C., Greegor, R. B., Lytle, F. W., Ercit, T. S., Rossman, G. R., Wicks, F. J., Ramik, R. A., Sherriff, B. L., Fleet, M. E., and McCammon, C., American Mineralogist (in press).Google Scholar
13Vance, E. R. and Metson, J. B., Physics and Chemistry of Minerals 12, 255 (1985).CrossRefGoogle Scholar
14Headley, T. J., Ewing, R. C., and Haaker, R. F., Nature 293, 449 (1981).CrossRefGoogle Scholar
15Fleet, M. J. and Henderson, G. S., in Scientific Basis for Nuclear Waste Management IX, edited by Werme, L. O. (Mater. Res. Soc. Symp. Proc. 50, Pittsburgh, PA, 1986), pp. 361370.Google Scholar
16Narayan, J., Fathy, D., Oen, O. S., and Holland, O. W., Mater. Lett. 3, 67 (1985).CrossRefGoogle Scholar
17Clinard, F. W. Jr, Livak, R. J., Hobbs, L. W., and Rohr, D. L., in Scientific Basis for Nuclear Waste Management IX, edited by Werme, L. O. (Mater. Res. Soc. Symp. Proc. 50, Pittsburgh, PA, 1986), pp. 371378.Google Scholar
18Eyal, Y. and Kaufman, A., Nucl. Technol. 58, 77 (1982).CrossRefGoogle Scholar
19Eyal, Y. and Fleischer, R. L., Geochim. Cosmochim. Acta 49, 1155 (1955).CrossRefGoogle Scholar
20Eby, R. K. and Ewing, R. C., in High Resolution Electron Microscopy of Defects in Materials, edited by Dahmen, U., Sinclair, R., and Smith, D. J. (Mater. Res. Soc. Symp. Proc. 183, Pittsburgh, PA, 1990), pp. 297300.Google Scholar