Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T10:12:09.919Z Has data issue: false hasContentIssue false

Aging of iron manganite negative temperature coefficient thermistors

Published online by Cambridge University Press:  31 January 2011

T. Battault
Affiliation:
Laboratoire de Chimie des Matériaux Inorganiques, U.R.A. C.N.R.S. 1311, Université Paul Sabatier–118, route de Narbonne, 31062 Toulouse Cedex, France
R. Legros
Affiliation:
Laboratoire de Chimie des Matériaux Inorganiques, U.R.A. C.N.R.S. 1311, Université Paul Sabatier–118, route de Narbonne, 31062 Toulouse Cedex, France
A. Rousset*
Affiliation:
Laboratoire de Chimie des Matériaux Inorganiques, U.R.A. C.N.R.S. 1311, Université Paul Sabatier–118, route de Narbonne, 31062 Toulouse Cedex, France
*
b) Author to whom correspondence should be addressed.[email protected]
Get access

Abstract

“Aging,” defined as the drift of resistance with temperature after 1000 h, was investigated for iron manganite temperature coefficient thermistors. For these devices, aging is relatively large, about 10%. The cationic distributions before and after aging were determined by Mössbauer spectroscopy. These distributions explain all the x-ray diffraction and correlated electrical data. The origin of the aging observed on iron manganites thermistors has been identified. It is due to the migration of Fe3+ ions from tetrahedral to octahedral sites of the spinel structure in order to reach a structural equilibrium.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Macklen, E. D., Thermistors (Electrochemical Publications Limited, 1979).Google Scholar
2.Caffin, J. P., Rousset, R., Carnet, R., and Lagrange, A., in Processing of the High Tech. Ceramics, edited by Vincenzini, P. (Elsevier Science Publishers B.V., Amsterdam, 1987), pp. 17431751.Google Scholar
3.Metz, R., Legros, R., Rousset, A., Caffin, J. P., Loubière, A., and Bui, A., Silicates Industriels 3–4 7176 (1990).Google Scholar
4.Legros, R., Fau, P., Minchin, H., Metz, R., Lagrange, A., and Rousset, A., in Ceramics Today-Tomorrow, edited by Vincenzini, P. (Elsevier Science Publishers B.V., Amsterdam, 1991), p. 2147.Google Scholar
5.Brieu, M., Couderc, J. J., Rousset, A., and Legros, R., J. Eur. Ceram. Soc. 11, 171177 (1993).CrossRefGoogle Scholar
6.Metz, R., Thesis, University Paul Sabatier, Toulouse, France (1991).Google Scholar
7.Krupicka, S., Simsa, Z., and Smetana, Z., Czech. J. Phys. B18, 10161025 (1968).CrossRefGoogle Scholar
8.Brabers, V. A. M., Phys. Status Solidi 33, 563–572(1969).CrossRefGoogle Scholar
9.Manaila, R. and Pausescu, P., Phys. Status Solidi 9, 385394 (1965).CrossRefGoogle Scholar
10.Brabers, V. A. M., J. Phys. Chem. Solids 32, 21812191 (1971).Google Scholar
11.Boucher, B., Buhl, R., and Perrin, M., Acta Crystallogr. B25, 23262333 (1969).CrossRefGoogle Scholar
12.Brabers, V. A. M. and Terhell, J. C. J. M., Phys. Status Solidi (a) 69, 325331 (1982).Google Scholar
13.Fritsch, S., Thesis, University Paul Sabatier, Toulouse, France (1995).Google Scholar
14.Battault, T., Legros, R., and Rousset, A., J. Eur. Ceram. Soc. 15, 11411147 (1995).CrossRefGoogle Scholar
15.Castelan, P., Bui, A., Loubière, A., Rousset, A., and Legros, R.. J. Appl. Phys. 72 (10), 47054709 (1992).CrossRefGoogle Scholar
16.Singh, V. K., Khatri, N. K., and Lokanathan, S., Indian. J Pure and Applied Physics 20, 8389 (1982).Google Scholar
17.Dorris, S. E., Thesis, Northwestern University, Evanston, IL (1986).Google Scholar
18.Tanaka, M. and Mizoguchi, T., J. Phys. Soc. Jpn. 18, 1091 (1963).CrossRefGoogle Scholar
19.Navrotsky, A. and Kleppa, J. O., J. Inorg. Nucl. Chem. 59, 27012714 (1967).Google Scholar
20.Verwey, E. J. W., Haaij, E. J. M., Romeijn, F. C., and Van Oosternout, C. W., Philips Res. Rep. 5, 173187 (1950).Google Scholar
21.Dorris, S. E. and Mason, T. O., J. Am. Ceram. Soc. 71 (5), 379385 (1988).Google Scholar
22.Wickham, D. G. and Croft, W. J., J. Phys. Chem. Solids 7, 351360 (1958).Google Scholar
23.Goodenough, J. B. and Loeb, A. L., Phys. Rev. 98 (2), 391408 (1955).CrossRefGoogle Scholar
24.Battault, T., Legros, R., Brieu, M., Couderc, J. J., Bernard, L., and Rousset, A., J. Phys. III France 7, 979992 (1997).Google Scholar