Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-02T20:16:21.154Z Has data issue: false hasContentIssue false

Advances in In situ microfracture experimentation techniques: A case of nanoscale metal–metal multilayered materials

Published online by Cambridge University Press:  26 March 2019

Hashina Parveen Anwar Ali
Affiliation:
Xtreme Materials Lab, Engineering Product Development (EPD) Pillar, Singapore University of Technology & Design (SUTD), Singapore 487372, Singapore
Arief Budiman*
Affiliation:
Xtreme Materials Lab, Engineering Product Development (EPD) Pillar, Singapore University of Technology & Design (SUTD), Singapore 487372, Singapore
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Plasticity and fracture of materials at the nanoscale levels can deviate significantly from the same phenomena in bulk properties, which may have important implications if they are to be used in real-world engineering systems. Nanoscale metal–metal multilayered materials provide a model material system platform to understand plasticity and fracture based on dislocation interactions with microstructural features. Recently, there is a growing trend to understand the fracture of multilayered materials to see the interactions between the crack and multilayered interface through novel experimentation techniques. In this review, we will introduce the rationale, the current microfracture methods to test and analyze the multilayer fracture behavior and the challenges faced in performing them. Four examples of in situ fracture techniques are highlighted in this work through tensile testing of film on a substrate: microfracture clamped beam bending technique across the multilayers and delamination along the multilayered interface.

Type
Invited Feature Paper - REVIEW
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Misra, A., Demkowicz, M., Zhang, X., and Hoagland, R.: The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59, 62 (2007).CrossRefGoogle Scholar
Zhang, X., Fu, E., Li, N., Misra, A., Wang, Y-Q., Shao, L., and Wang, H.: Design of radiation tolerant nanostructured metallic multilayers. J. Eng. Mater. Technol. 134, 041010 (2012).CrossRefGoogle Scholar
Beyerlein, I., Caro, A., Demkowicz, M., Mara, N., Misra, A., and Uberuaga, B.: Radiation damage tolerant nanomaterials. Mater. Today 16, 443 (2013).CrossRefGoogle Scholar
Anwar Ali, H.P. and Budiman, A.S.: Designing novel metallic multilayer nanocomposites through atomic engineering of interfaces-influence of heat of mixing. Procedia Eng. 215, 226 (2017).CrossRefGoogle Scholar
Misra, A.: Mechanical behavior of metallic nanolaminates. Nanostruct. Control Mater. 7, 146 (2006).CrossRefGoogle Scholar
Misra, A., Verdier, M., Lu, Y., Kung, H., Mitchell, T., Nastasi, M., and Embury, J.: Structure and mechanical properties of Cu–X (X = Nb, Cr, Ni) nanolayered composites. Scr. Mater. 39, 555 (1998).CrossRefGoogle Scholar
Fu, E., Li, N., Misra, A., Hoagland, R., Wang, H., and Zhang, X.: Mechanical properties of sputtered Cu/V and Al/Nb multilayer films. Mater. Sci. Eng., A 493, 283 (2008).CrossRefGoogle Scholar
Zhang, J., Wu, K., Zhang, L., Wang, Y., Liu, G., and Sun, J.: Unraveling the correlation between Hall–Petch slope and peak hardness in metallic nanolaminates. Int. J. Plast. 96, 120 (2017).CrossRefGoogle Scholar
Misra, A., Hirth, J., and Hoagland, R.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).CrossRefGoogle Scholar
Misra, A. and Hoagland, R.: Plastic flow stability of metallic nanolaminate composites. J. Mater. Sci. 42, 1765 (2007).CrossRefGoogle Scholar
Misra, A., Verdier, M., Kung, H., Embury, J., and Hirth, J.: Deformation mechanism maps for polycrystalline metallic multilayers. Scr. Mater. 41, 973 (1999).CrossRefGoogle Scholar
Wang, J., Hoagland, R., Hirth, J., and Misra, A.: Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces. Acta Mater. 56, 3109 (2008).CrossRefGoogle Scholar
Wang, J.: Atomistic simulations of dislocation pileup: Grain boundaries interaction. JOM 67, 1515 (2015).CrossRefGoogle Scholar
Wang, J., Hoagland, R.G., and Misra, A.: Mechanics of nanoscale metallic multilayers: From atomic-scale to micro-scale. Scr. Mater. 60, 1067 (2009).CrossRefGoogle Scholar
Li, N., Wang, J., Huang, J., Misra, A., and Zhang, X.: In situ TEM observations of room temperature dislocation climb at interfaces in nanolayered Al/Nb composites. Scr. Mater. 63, 363 (2010).CrossRefGoogle Scholar
Li, Y., Fang, X., Xia, B., and Feng, X.: In situ measurement of oxidation evolution at elevated temperature by nanoindentation. Scr. Mater. 103, 61 (2015).CrossRefGoogle Scholar
Li, N., Wang, J., Misra, A., and Huang, J.Y.: Direct observations of confined layer slip in Cu/Nb multilayers. Microsc. Microanal. 18, 1155 (2012).CrossRefGoogle ScholarPubMed
Mara, N., Bhattacharyya, D., Dickerson, P., Hoagland, R., and Misra, A.: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92, 1901 (2008).CrossRefGoogle Scholar
Mara, N., Bhattacharyya, D., Hirth, J., Dickerson, P., and Misra, A.: Mechanism for shear banding in nanolayered composites. Appl. Phys. Lett. 97, 021909 (2010).CrossRefGoogle Scholar
Mara, N.A. and Beyerlein, I.J.: Review: Effect of bimetal interface structure on the mechanical behavior of Cu–Nb fcc–bcc nanolayered composites. J. Mater. Sci. 49, 6497 (2014).CrossRefGoogle Scholar
Budiman, A.S., Li, N., Wei, Q., Baldwin, J.K., Xiong, J., Luo, H., Trugman, D., Jia, Q.X., Tamura, N., Kunz, M., Chen, K., and Misra, A.: Growth and structural characterization of epitaxial Cu/Nb multilayers. Thin Solid Films 519, 4137 (2011).CrossRefGoogle Scholar
Budiman, A.S., Han, S-M., Li, N., Wei, Q-M., Dickerson, P., Tamura, N., Kunz, M., and Misra, A.: Plasticity in the nanoscale Cu/Nb single-crystal multilayers as revealed by synchrotron Laue X-ray microdiffraction. J. Mater. Res. 27, 599 (2012).CrossRefGoogle Scholar
Budiman, A., Narayanan, K.R., Li, N., Wang, J., Tamura, N., Kunz, M., and Misra, A.: Plasticity evolution in nanoscale Cu/Nb single-crystal multilayers as revealed by synchrotron X-ray microdiffraction. Mater. Sci. Eng., A 635, 6 (2015).CrossRefGoogle Scholar
Anwar Ali, H.P., Kunz, M., Tamura, N., and Budiman, A.S.: Probing plasticity mechanisms in low melting temperature metallic nanostructures using synchrotron X-ray microdiffraction. Procedia Eng. 215, 246 (2017).Google Scholar
Budiman, A.S.: Probing Crystal Plasticity at the Nanoscales: Synchrotron X-ray Microdiffraction (Springer, Singapore, Singapore, 2015).CrossRefGoogle Scholar
Budiman, A., Han, S., Greer, J., Tamura, N., Patel, J., and Nix, W.: A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray microdiffraction. Acta Mater. 56, 602 (2008).CrossRefGoogle Scholar
Feng, G., Budiman, A., Nix, W., Tamura, N., and Patel, J.: Indentation size effects in single crystal copper as revealed by synchrotron X-ray microdiffraction. J. Appl. Phys. 104, 043501 (2008).CrossRefGoogle Scholar
Jiang, T., Wu, C., Su, P., Liu, X., Chia, P., Li, L., Son, H-Y., Oh, J-S., Byun, K-Y., Kim, N-S., Im, J., Huang, R., and Ho, P.S.: Characterization of plasticity and stresses in TSV structures in stacked dies using synchrotron X-ray microdiffraction. In 2013 IEEE 63rd Electronic Components and Technology Conference (Las Vegas, NV, 2013); pp. 641647.Google Scholar
Liu, X., Thadesar, P.A., Taylor, C.L., Oh, H., Kunz, M., Tamura, N., Bakir, M.S., and Sitaraman, S.K.: In situ microscale through-silicon via strain measurements by synchrotron X-ray microdiffraction exploring the physics behind data interpretation. Appl. Phys. Lett. 105, 112109 (2014).CrossRefGoogle Scholar
Radchenko, I., Tippabhotla, S., Tamura, N., and Budiman, A.: Probing phase transformations and microstructural evolutions at the small scales: Synchrotron X-ray microdiffraction for advanced applications in 3D IC (integrated circuits) and solar PV (photovoltaic) devices. J. Electron. Mater. 45, 6222 (2016).CrossRefGoogle Scholar
Anwar Ali, H.P., Radchenko, I., Zhou, J., Qing, L., and Budiman, A.: Designing novel multilayered nanocomposites for high-performance coating materials with online strain monitoring capability. Proc. Inst. Mech. Eng., Part L, 1 (2017). doi: 10.1177/1464420717695354.Google Scholar
Lashmore, D.S. and Thomson, R.: Cracks and dislocations in face-centered cubic metallic multilayers. J. Mater. Res. 7, 2379 (1992).CrossRefGoogle Scholar
Anderson, P., Lin, I-H., and Thomson, R.: Fracture in multilayers. Scr. Metall. Mater. 27, 687 (1992).CrossRefGoogle Scholar
Matthews, J. and Blakeslee, A.: Defects in epitaxial multilayers: II. Dislocation pile-ups, threading dislocations, slip lines and cracks. J. Cryst. Growth 29, 273 (1975).CrossRefGoogle Scholar
Mara, N., Bhattacharyya, D., Hoagland, R., and Misra, A.: Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scr. Mater. 58, 874 (2008).CrossRefGoogle Scholar
Hattar, K., Misra, A., Dosanjh, M., Dickerson, P., Robertson, I., and Hoagland, R.: Direct observation of crack propagation in copper–niobium multilayers. J. Eng. Mater. Technol. 134, 021014 (2012).CrossRefGoogle Scholar
Kammers, A.D. and Daly, S.: Digital image correlation under scanning electron microscopy: Methodology and validation. Exp. Mech. 53, 1743 (2013).CrossRefGoogle Scholar
Doerner, M.F. and Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
Hay, J.: Introduction to instrumented indentation testing. Exp. Tech. 33, 66 (2009).CrossRefGoogle Scholar
Dehm, G., Jaya, B., Raghavan, R., and Kirchlechner, C.: Overview on micro-and nanomechanical testing: New insights in interface plasticity and fracture at small length scales. Acta Mater. 142, 248 (2018).CrossRefGoogle Scholar
Aydıner, C., Brown, D., Mara, N., Almer, J., and Misra, A.: In situ X-ray investigation of freestanding nanoscale Cu–Nb multilayers under tensile load. Appl. Phys. Lett. 94, 031906 (2009).CrossRefGoogle Scholar
Li, N., Mara, N., Wang, J., Dickerson, P., Huang, J., and Misra, A.: Ex situ and in situ measurements of the shear strength of interfaces in metallic multilayers. Scr. Mater. 67, 479 (2012).CrossRefGoogle Scholar
Mayer, C., Li, N., Mara, N., and Chawla, N.: Micromechanical and in situ shear testing of Al–SiC nanolaminate composites in a transmission electron microscope (TEM). Mater. Sci. Eng., A 621, 229 (2015).CrossRefGoogle Scholar
Mara, N.A., Li, N., Misra, A., and Wang, J.: Interface-driven plasticity in metal–ceramic nanolayered composites: Direct validation of multiscale deformation modeling via in situ indentation in TEM. JOM 68, 143 (2016).CrossRefGoogle Scholar
ASTM E1820-18a, Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, PA, 2018, Available at: www.astm.org. doi: 10.1520/E1820-18A.CrossRefGoogle Scholar
ASTM E399-17, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials, ASTM International, West Conshohocken, PA, 2017, Available at: www.astm.org. doi: 10.1520/E0399-17.CrossRefGoogle Scholar
Alfreider, M., Kozic, D., Kolednik, O., and Kiener, D.: In situ elastic–plastic fracture mechanics on the microscale by means of continuous dynamical testing. Mater. Des. 148, 177 (2018).CrossRefGoogle Scholar
Allison, P.G., Moser, R.D., Schirer, J., Martens, R., Jordon, J., and Chandler, M.Q.: In situ nanomechanical studies of deformation and damage mechanisms in nanocomposites monitored using scanning electron microscopy. Mater. Lett. 131, 313 (2014).CrossRefGoogle Scholar
Bohnert, C., Schmitt, N., Weygand, S., Kraft, O., and Schwaiger, R.: Fracture toughness characterization of single-crystalline tungsten using notched micro-cantilever specimens. Int. J. Plast. 81, 1 (2016).CrossRefGoogle Scholar
Liu, S., Wheeler, J., Howie, P., Zeng, X., Michler, J., and Clegg, W.: Measuring the fracture resistance of hard coatings. Appl. Phys. Lett. 102, 171907 (2013).CrossRefGoogle Scholar
Sebastiani, M., Johanns, K., Herbert, E.G., Carassiti, F., and Pharr, G.: A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings. Philos. Mag. 95, 1928 (2015).CrossRefGoogle Scholar
Sebastiani, M., Bemporad, E., Carassiti, F., and Schwarzer, N.: Residual stress measurement at the micrometer scale: Focused ion beam (FIB) milling and nanoindentation testing. Philos. Mag. 91, 1121 (2011).CrossRefGoogle Scholar
Jaya, B.N., Bhowmick, S., Asif, S.S., Warren, O.L., and Jayaram, V.: Optimization of clamped beam geometry for fracture toughness testing of micron-scale samples. Philos. Mag. 95, 1945 (2015).CrossRefGoogle Scholar
Jaya, B.N. and Jayaram, V.: Crack stability in edge-notched clamped beam specimens: Modeling and experiments. Int. J. Fract. 188, 213 (2014).CrossRefGoogle Scholar
Jaya, B.N., Jayaram, V., and Biswas, S.K.: A new method for fracture toughness determination of graded (Pt, Ni) Al bond coats by microbeam bend tests. Philos. Mag. 92, 3326 (2012).CrossRefGoogle Scholar
Huang, H. and Spaepen, F.: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261 (2000).CrossRefGoogle Scholar
Greer, J.R. and De Hosson, J.T.M.: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654 (2011).CrossRefGoogle Scholar
Di Maio, D. and Roberts, S.: Measuring fracture toughness of coatings using focused-ion-beam-machined microbeams. J. Mater. Res. 20, 299 (2005).CrossRefGoogle Scholar
Jaya, B.N., Kirchlechner, C., and Dehm, G.: Can microscale fracture tests provide reliable fracture toughness values? A case study in silicon. J. Mater. Res. 30, 686 (2015).CrossRefGoogle Scholar
Uchic, M.D., Shade, P.A., and Dimiduk, D.M.: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361 (2009).CrossRefGoogle Scholar
Kraft, O., Gruber, P.A., Mӧnig, R., and Weygand, D.: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).CrossRefGoogle Scholar
Jaya, B.N. and Jayaram, V.: Fracture testing at small-length scales: From plasticity in Si to brittleness in Pt. JOM 68, 94 (2016).CrossRefGoogle Scholar
Kizilyaprak, C., Daraspe, J., and Humbel, B.: Focused ion beam scanning electron microscopy in biology. J. Microsc. 254, 109 (2014).CrossRefGoogle ScholarPubMed
Narayan, K., Danielson, C.M., Lagarec, K., Lowekamp, B.C., Coffman, P., Laquerre, A., Phaneuf, M.W., Hope, T.J., and Subramaniam, S.: Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology. J. Struct. Biol. 185, 278 (2014).CrossRefGoogle ScholarPubMed
Zschech, E., Langer, E., Engelmann, H-J., and Dittmar, K.: Physical failure analysis in semiconductor industry—Challenges of the copper interconnect process. Mater. Sci. Semicond. Process. 5, 457 (2002).CrossRefGoogle Scholar
Giannuzzi, L., Drown, J., Brown, S., Irwin, R., and Stevie, F.: Focused ion beam milling and micromanipulation lift-out for site specific cross-section TEM specimen preparation. MRS Online Proc. Libr. 480, 1927 (1997).CrossRefGoogle Scholar
Kiener, D., Motz, C., Rester, M., Jenko, M., and Dehm, G.: FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater. Sci. Eng., A 459, 262 (2007).CrossRefGoogle Scholar
Uchic, M.D. and Dimiduk, D.M.: A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater. Sci. Eng., A 400, 268 (2005).CrossRefGoogle Scholar
Radchenko, I., Anwarali, H., Tippabhotla, S., and Budiman, A.: Effects of interface shear strength during failure of semicoherent metal–metal nanolaminates: An example of accumulative roll-bonded Cu/Nb. Acta Mater. 156, 125135 (2018).CrossRefGoogle Scholar
Bei, H., Shim, S., Miller, M., Pharr, G., and George, E.: Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal. Appl. Phys. Lett. 91, 111915 (2007).CrossRefGoogle Scholar
Xiao, Y., Wehrs, J., Ma, H., Al-Samman, T., Korte-Kerzel, S., Gӧken, M., Michler, J., Spolenak, R., and Wheeler, J.: Investigation of the deformation behavior of aluminum micropillars produced by focused ion beam machining using Ga and Xe ions. Scr. Mater. 127, 191 (2017).CrossRefGoogle Scholar
Burek, M.J. and Greer, J.R.: Fabrication and microstructure control of nanoscale mechanical testing specimens via electron beam lithography and electroplating. Nano Lett. 10, 69 (2009).CrossRefGoogle Scholar
Hütsch, J. and Lilleodden, E.T.: The influence of focused-ion beam preparation technique on microcompression investigations: Lathe versus annular milling. Scr. Mater. 77, 49 (2014).CrossRefGoogle Scholar
Lauener, C., Petho, L., Chen, M., Xiao, Y., Michler, J., and Wheeler, J.M.: Fracture of silicon: Influence of rate, positioning accuracy, FIB machining, and elevated temperatures on toughness measured by pillar indentation splitting. Mater. Des. 142, 340 (2018).CrossRefGoogle Scholar
Anderson, T.L. and Anderson, T.: Fracture Mechanics: Fundamentals and Applications (CRC Press, USA, 2005).CrossRefGoogle Scholar
Simha, N., Fischer, F., Kolednik, O., and Chen, C.: Inhomogeneity effects on the crack driving force in elastic and elastic–plastic materials. J. Mech. Phys. Solids 51, 209 (2003).CrossRefGoogle Scholar
Dauskardt, R., Lane, M., Ma, Q., and Krishna, N.: Adhesion and debonding of multi-layer thin film structures. Eng. Fract. Mech. 61, 141 (1998).CrossRefGoogle Scholar
Erdogan, F.: Fracture mechanics of functionally graded materials. MRS Bull. 20, 43 (1995).CrossRefGoogle Scholar
Hutchinson, J. and Evans, A.: Mechanics of materials: Top-down approaches to fracture. Acta Mater. 48, 125 (2000).CrossRefGoogle Scholar
Simha, N., Fischer, F., Kolednik, O., Predan, J., and Shan, G.: Crack tip shielding or anti-shielding due to smooth and discontinuous material inhomogeneities. Int. J. Fract. 135, 73 (2005).CrossRefGoogle Scholar
Wurster, S., Motz, C., Jenko, M., and Pippan, R.: Micrometer-sized specimen preparation based on ion slicing technique. Adv. Eng. Mater. 12, 61 (2010).CrossRefGoogle Scholar
Motz, C., Schӧberl, T., and Pippan, R.: Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique. Acta Mater. 53, 4269 (2005).CrossRefGoogle Scholar
Kapp, M.W., Kirchlechner, C., Pippan, R., and Dehm, G.: Importance of dislocation pile-ups on the mechanical properties and the Bauschinger effect in microcantilevers. J. Mater. Res. 30, 791 (2015).CrossRefGoogle Scholar
Zechner, J. and Kolednik, O.: Fracture resistance of aluminum multilayer composites. Eng. Fract. Mech. 110, 489 (2013).CrossRefGoogle Scholar
Macionczyk, F. and Brückner, W.: Tensile testing of AlCu thin films on polyimide foils. J. Appl. Phys. 86, 4922 (1999).CrossRefGoogle Scholar
Xiang, Y., Li, T., Suo, Z., and Vlassak, J.J.: High ductility of a metal film adherent on a polymer substrate. Appl. Phys. Lett. 87, 161910 (2005).CrossRefGoogle Scholar
Zhang, G., Zhu, X., Tan, J., and Liu, Y.: Origin of cracking in nanoscale Cu/Ta multilayers. Appl. Phys. Lett. 89, 041920 (2006).CrossRefGoogle Scholar
Zhu, X. and Zhang, G.: Tensile and fatigue properties of ultrafine Cu–Ni multilayers. J. Phys. D: Appl. Phys. 42, 055411 (2009).CrossRefGoogle Scholar
Li, Y., Tan, J., and Zhang, G.: Interface instability within shear bands in nanoscale Au/Cu multilayers. Scr. Mater. 59, 1226 (2008).CrossRefGoogle Scholar
Li, Y. and Zhang, G.: On plasticity and fracture of nanostructured Cu/X (X = Au, Cr) multilayers: The effects of length scale and interface/boundary. Acta Mater. 58, 3877 (2010).CrossRefGoogle Scholar
Zhu, X., Li, Y., Zhang, G., Tan, J., and Liu, Y.: Understanding nanoscale damage at a crack tip of multilayered metallic composites. Appl. Phys. Lett. 92, 161905 (2008).CrossRefGoogle Scholar
Zhu, X., Zhang, G., Yan, C., Zhu, S., and Sun, J.: Scale-dependent fracture mode in Cu–Ni laminate composites. Philos. Mag. Lett. 90, 413 (2010).CrossRefGoogle Scholar
Zhang, G., Liu, Y., Wang, W., and Tan, J.: Experimental evidence of plastic deformation instability in nanoscale Au/Cu multilayers. Appl. Phys. Lett. 88, 013105 (2006).CrossRefGoogle Scholar
Li, X., Kreuter, T., Luo, X., Schwaiger, R., and Zhang, G.: Detecting co-deformation behavior of Cu–Au nanolayered composites. Mater. Res. Lett. 5, 20 (2017).CrossRefGoogle Scholar
Li, Y., Zhang, G., Wang, W., Tan, J., and Zhu, S.: On interface strengthening ability in metallic multilayers. Scr. Mater. 57, 117 (2007).CrossRefGoogle Scholar
Yan, J., Zhu, X., Yang, B., and Zhang, G.: Shear stress-driven refreshing capability of plastic deformation in nanolayered metals. Phys. Rev. Lett. 110, 155502 (2013).CrossRefGoogle ScholarPubMed
Li, Y., Zhu, X., Tan, J., Wu, B., and Zhang, G.: Two different types of shear-deformation behaviour in Au–Cu multilayers. Philos. Mag. Lett. 89, 66 (2009).CrossRefGoogle Scholar
Yu, D.Y. and Spaepen, F.: The yield strength of thin copper films on Kapton. J. Appl. Phys. 95, 2991 (2004).CrossRefGoogle Scholar
Avilés, F., Llanes, L., and Oliva, A.: Elasto-plastic properties of gold thin films deposited onto polymeric substrates. J. Mater. Sci. 44, 2590 (2009).CrossRefGoogle Scholar
Zhu, X., Zhang, G., Tan, J., Liu, Y., and Zhu, S.: Damage behavior of Cu–Ta bilayered films under cyclic loading. J. Mater. Res. 22, 2478 (2007).CrossRefGoogle Scholar
Zhang, J., Zhang, X., Wang, R., Lei, S., Zhang, P., Niu, J., Liu, G., Zhang, G., and Sun, J.: Length-scale-dependent deformation and fracture behavior of Cu/X (X = Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase. Acta Mater. 59, 7368 (2011).CrossRefGoogle Scholar
Zhang, J., Zhang, X., Liu, G., Zhang, G., and Sun, J.: Dominant factor controlling the fracture mode in nanostructured Cu/Cr multilayer films. Mater. Sci. Eng., A 528, 2982 (2011).CrossRefGoogle Scholar
Zhang, X. and Zhang, G.: Length scale dependent ductility and fracture behavior of Cu/Nb nanostructured metallic multilayers. Acta Metall. Sin. 47, 246 (2011).Google Scholar
Dundurs, J. and Mura, T.: Interaction between an edge dislocation and a circular inclusion. J. Mech. Phys. Solids 12, 177 (1964).CrossRefGoogle Scholar
Was, G. and Foecke, T.: Deformation and fracture in microlaminates. Thin Solid Films 286, 1 (1996).CrossRefGoogle Scholar
Wu, K., Zhang, J., Liu, G., Zhang, P., Cheng, P., Li, J., Zhang, G., and Sun, J.: Buckling behaviors and adhesion energy of nanostructured Cu/X (X = Nb, Zr) multilayer films on a compliant substrate. Acta Mater. 61, 7889 (2013).CrossRefGoogle Scholar
Jaeger, G., Endler, I., Heilmaier, M., Bartsch, K., and Leonhardt, A.: A new method of determining strength and fracture toughness of thin hard coatings. Thin Solid Films 377, 382 (2000).CrossRefGoogle Scholar
Budiman, A.S.: Enhanced fracture toughness in nanoscale FCC–BCC multilayered composite materials through interface engineering. In Keynote Talk, International Conference on Plasticity, Damage and Fracture 2017 (Puerto Vallarta, Mexico, 2017).Google Scholar
Anwar Ali, H.P., Radchenko, I., Li, N., and Budiman, A.: The roles of interfaces and other microstructural features in Cu/Nb nanolayers as revealed by in situ beam bending experiments inside an scanning electron microscope (SEM). Mater. Sci. Eng., A 738, 253 (2018).CrossRefGoogle Scholar
Timoshenko, S.: Theory of Elasticity, 1st ed. (Mcgraw-Hill Book Company, Inc., New York, 1934).Google Scholar
Iqbal, F., Ast, J., Gӧken, M., and Durst, K.: In situ micro-cantilever tests to study fracture properties of NiAl single crystals. Acta Mater. 60, 1193 (2012).CrossRefGoogle Scholar
Kozic, D., Gänser, H-P., Brunner, R., Kiener, D., Antretter, T., and Kolednik, O.: Crack arrest in thin metallic film stacks due to material-and residual stress inhomogeneities. Thin Solid Films 668, 14 (2018).CrossRefGoogle Scholar
Treml, R., Kozic, D., Schӧngrundner, R., Kolednik, O., Gänser, H-P., Brunner, R., and Kiener, D.: Miniaturized fracture experiments to determine the toughness of individual films in a multilayer system. Extreme Mech. Lett. 8, 235 (2016).CrossRefGoogle Scholar
Demkowicz, M. and Thilly, L.: Structure, shear resistance and interaction with point defects of interfaces in Cu–Nb nanocomposites synthesized by severe plastic deformation. Acta Mater. 59, 7744 (2011).CrossRefGoogle Scholar
Hsia, K.J., Suo, Z., and Yang, W.: Cleavage due to dislocation confinement in layered materials. J. Mech. Phys. Solids 42, 877 (1994).CrossRefGoogle Scholar
Zheng, S., Wang, J., Carpenter, J., Mook, W., Dickerson, P., Mara, N., and Beyerlein, I.: Plastic instability mechanisms in bimetallic nanolayered composites. Acta Mater. 79, 282 (2014).CrossRefGoogle Scholar
Snel, J., Monclús, M., Castillo-Rodríguez, M., Mara, N., Beyerlein, I., Llorca, J., and Molina-Aldareguía, J.: Deformation mechanism map of Cu/Nb nanoscale metallic multilayers as a function of temperature and layer thickness. JOM 69, 2214 (2017).CrossRefGoogle Scholar
Mara, N., Bhattacharyya, D., Dickerson, P., Hoagland, R., and Misra, A.: TEM characterization of deformation and failure mechanisms in 40 nm and 5 nm Cu/Nb nanolayered micro compression pillars. Microsc. Microanal. 15, 352 (2009).CrossRefGoogle Scholar
Matoy, K., Schӧnherr, H., Detzel, T., Schӧberl, T., Pippan, R., Motz, C., and Dehm, G.: A comparative micro-cantilever study of the mechanical behavior of silicon based passivation films. Thin Solid Films 518, 247 (2009).CrossRefGoogle Scholar
Treml, R., Kozic, D., Zechner, J., Maeder, X., Sartory, B., Gänser, H-P., Schӧngrundner, R., Michler, J., Brunner, R., and Kiener, D.: High resolution determination of local residual stress gradients in single-and multilayer thin film systems. Acta Mater. 103, 616 (2016).CrossRefGoogle Scholar
Massl, S., Keckes, J., and Pippan, R.: A direct method of determining complex depth profiles of residual stresses in thin films on a nanoscale. Acta Mater. 55, 4835 (2007).CrossRefGoogle Scholar
Schӧngrundner, R., Treml, R., Antretter, T., Kozic, D., Ecker, W., Kiener, D., and Brunner, R.: Critical assessment of the determination of residual stress profiles in thin films by means of the ion beam layer removal method. Thin Solid Films 564, 321 (2014).CrossRefGoogle Scholar
Mead, J.L., Lu, M., and Huang, H.: Inducing stable interfacial delamination in a multilayer system by four-point bending of microbridges. Surf. Coat. Technol. 320, 478 (2017).CrossRefGoogle Scholar