Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T13:49:22.728Z Has data issue: false hasContentIssue false

Adhesion strength and nanomechanical characterization of ZnO thin films

Published online by Cambridge University Press:  18 April 2017

Vipul Bhardwaj
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
Rajib Chowdhury
Affiliation:
Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
Rengaswamy Jayaganthan*
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; and Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
*
a)Address all correspondence to this author. e-mail: [email protected], [email protected]
Get access

Abstract

The present study was focused to investigate mechanical properties of ZnO thin films deposited on fused quartz substrates at different sputtering deposition pressures (5, 10, 15, and 20 mTorr) using DC sputtering. The crystallinity and microstructure show a marked influence on the mechanical properties of ZnO thin films. The structural evolution of the thin films is in (002) plane and influenced by deposition pressure. The intensity of (002) peak of the films rises initially and decreases with further increasing deposition pressure. The mechanical properties such as hardness, Young’s modulus, and coefficient of friction of ZnO thin films were measured using three-sided pyramidal Berkovich nanoindentation. The adhesion strength of thin films was measured by using scratch test under ramp loading. Load–displacement profile of thin films at continuous indentation cycle without any discontinuity revealed no fracture, cracking event, and defects, which is a consequence of dense microstructure and good adherence of films to the substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Sam Zhang

References

REFERENCES

Wang, D. and Bierwagen, G.P.: Sol–gel coatings on metals for corrosion protection. Prog. Org. Coat. 64(4), 327 (2009).Google Scholar
Ralib, A.A.M., Nordin, A.N., Malik, N.A., Othman, R., Alam, A.Z., Khan, S., Mortada, O., Crunteanu, A., Chatras, M., and Orlianges, J.C.: A study on controllable aluminium doped zinc oxide patterning by chemical etching for MEMS application. Microsys. Technol. (2016), doi: 10.1007/s00542-015-2783-1.Google Scholar
Freund, L.B. and Suresh, S.: Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, Cambridge, U.K., 2004).Google Scholar
Daniel, R., Zeilinger, A., Schöberl, T., Sartory, B., Mitterer, C., and Keckes, J.: Microstructure-controlled depth gradients of mechanical properties in thin nanocrystalline films: Towards structure-property gradient functionalization. J. Appl. Phys. 117(23), 235301 (2015).Google Scholar
Kelly, P. and Arnell, R.: Magnetron sputtering: A review of recent developments and applications. Vacuum 56(3), 159 (2000).Google Scholar
Ohring, M.: Materials Science of Thin Films (Academic Press, San Diego, USA, 2001).Google Scholar
Lee, J-E., Kim, H-J., and Kim, D-E.: Assessment of adhesion between thin film and silicon based on a scratch test. J. Mech. Sci. Technol. 24(1), 97 (2010).Google Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).Google Scholar
Tian, Q. and Liu, H.: Electrophoretic deposition and characterization of nanocomposites and nanoparticles on magnesium substrates. Nanotechnology 26(17), 175102 (2015).Google Scholar
Chen, J. and Bull, S.: Approaches to investigate delamination and interfacial toughness in coated systems: An overview. J. Phys. D: Appl. Phys. 44(3), 034001 (2010).Google Scholar
Znaidi, L.: Sol–gel-deposited ZnO thin films: A review. Mater. Sci. Eng., B 174(1–3), 18 (2010).Google Scholar
Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M., Doğan, S., Avrutin, V., Cho, S-J., and Morkoc, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 041301 (2005).Google Scholar
Klingshirn, C.F., Waag, A., Hoffmann, A., and Geurts, J.: Zinc Oxide: From Fundamental Properties Towards Novel Applications (Springer Science & Business Media, New York, USA, 2010).CrossRefGoogle Scholar
Lu, S., Liao, Q., Qi, J., Liu, S., Liu, Y., Liang, Q., Zhang, G., and Zhang, Y.: The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction. Nano Res. 9(2), 372 (2016).Google Scholar
Hong, J., Matsushita, N., and Kim, K.: Effect of dopants and thermal treatment on properties of Ga–Al–ZnO thin films fabricated by hetero targets sputtering system. Thin Solid Films 531, 238 (2013).Google Scholar
Coleman, V., Bradby, J., Jagadish, C., Munroe, P., Heo, Y., Pearton, S., Norton, D., Inoue, M., and Yano, M.: Mechanical properties of ZnO epitaxial layers grown on a- and c-axis sapphire. Appl. Phys. Lett. 86(20), 203105 (2005).Google Scholar
Lai, C-m., Lin, K-m., and Rosmaidah, S.: Effect of annealing temperature on the quality of Al-doped ZnO thin films prepared by sol–gel method. J. Sol-Gel Sci. Technol. 61(1), 249 (2012).CrossRefGoogle Scholar
Jian, S-R.: Pop-in effects and dislocation nucleation of c-plane single-crystal ZnO by Berkovich nanoindentation. J. Alloys Compd. 644, 54 (2015).Google Scholar
Yau, W-H., Tseng, P-C., Wen, H-C., Tsai, C-H., and Chou, W-C.: Luminescence properties of mechanically nanoindented ZnSe. Microelectron. Reliab. 51(5), 931 (2011).Google Scholar
Tayebi, N., Polycarpou, A.A., and Conry, T.F.: Effects of substrate on determination of hardness of thin films by nanoscratch and nanoindentation techniques. J. Mater. Res. 19(6), 1791 (2004).Google Scholar
Huang, Y-C. and Chang, S-Y.: Substrate effect on mechanical characterizations of aluminum-doped zinc oxide transparent conducting films. Surf. Coat. Technol. 204(20), 3147 (2010).Google Scholar
Sagalowicz, L. and Fox, G.R.: Planar defects in ZnO thin films deposited on optical fibers and flat substrates. J. Mater. Res. 14(5), 1876 (1999).Google Scholar
Stokes, A. and Wilson, A.: The diffraction of X-rays by distorted crystal aggregates-I. Proc. Phys. Soc., London, Sect. A 56(3), 174 (1944).Google Scholar
Williamson, G. and Smallman, R. III: Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos. Mag. 1(1), 34 (1956).Google Scholar
Sun, F. and Froes, F.H.: Synthesis and characterization of mechanical-alloyed Ti–xMg alloys. J. Alloys Compd. 340(1–2), 220 (2002).Google Scholar
Ni, W., Cheng, Y-T., Lukitsch, M., Weiner, A.M., Lev, L.C., and Grummon, D.S.: Novel layered tribological coatings using a superelastic NiTi interlayer. Wear 259(7), 842 (2005).Google Scholar
Kolodziejczyk, L., Szymanski, W., Batory, D., and Jedrzejczak, A.: Nanotribology of silver and silicon doped carbon coatings. Diamond Relat. Mater. 67, 8 (2016).Google Scholar
Fischer-Cripps, A. C.: Nanoindentation (Springer, New York, 2011).Google Scholar
Bao, D., Gu, H., and Kuang, A.: Sol–gel-derived c-axis oriented ZnO thin films. Thin Solid Films 312(1), 37 (1998).Google Scholar
Kim, M.S., Yim, K.G., Cho, M.Y., Leem, J.Y., Lee, D.Y., Kim, J.S., Kim, J.S., and Son, J.S.: Post-annealing effects on the structural and the optical properties of ZnO thin films grown by using the hydrothermal method. J. Korean. Phys. Soc. 58(3), 515 (2011).Google Scholar
Van der Drift, A.: Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res. Rep. 22(3), 267 (1967).Google Scholar
Fujimura, N., Nishihara, T., Goto, S., Xu, J., and Ito, T.: Control of preferred orientation for ZnO x films: Control of self-texture. J. Cryst. Growth 130(1), 269 (1993).Google Scholar
Aita, C.R., Purdes, A.J., Lad, K.L., and Funkenbusch, P.D.: The effect of O2 on reactively sputtered zinc oxide. J. Appl. Phys. 51(10), 5533 (1980).Google Scholar
Dave, V., Dubey, P., Gupta, H., and Chandra, R.: Influence of sputtering pressure on the structural, optical and hydrophobic properties of sputtered deposited HfO2 coatings. Thin Solid Films 549, 2 (2013).Google Scholar
Peng, L-P., He, A-L., Fang, L., and Yang, X-F.: Structure and properties of indium-doped ZnO films prepared by RF magnetron sputtering under different pressures. Rare Met. (2015), doi: 10.1007/s12598-015-0661-8.Google Scholar
Coleman, V.A. and Jagadish, C.: Basic Properties and Applications of ZnO. In Zinc Oxide Bulk, Thin Films and Nanostructures (Elsevier Science Ltd., Oxford, 2006); ch. 1.Google Scholar
Sung, T., Huang, J., and Chen, H.: Mechanical response of polar/non-polar ZnO under low dimensional stress. Appl. Phys. Lett. 102(24), 241901 (2013).CrossRefGoogle Scholar
Lin, L-Y., Jeong, M-C., Kim, D-E., and Myoung, J-M.: Micro/nanomechanical properties of aluminum-doped zinc oxide films prepared by radio frequency magnetron sputtering. Surf. Coat. Technol. 201(6), 2547 (2006).Google Scholar
Roy, T.K.: Assessing hardness and fracture toughness in sintered zinc oxide ceramics through indentation technique. Mater. Sci. Eng., A 640, 267 (2015).Google Scholar
Maharaj, D. and Bhushan, B.: Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation. Beilstein J. Nanotechnol. 5(1), 822 (2014).Google Scholar
Bull, S.: Nanoindentation of coatings. J. Phys. D: Appl. Phys. 38(24), R393 (2005).Google Scholar
Patriarche, G., Glas, F., Le Roux, G., Largeau, L., Mereuta, A., Ougazzaden, A., and Benchimol, J.: TEM study of the morphological and compositional instabilities of InGaAsP epitaxial structures. J. Cryst. Growth 221(1), 12 (2000).Google Scholar
Navamathavan, R., Kim, K-K., Hwang, D-K., Park, S-J., Hahn, J-H., Lee, T.G., and Kim, G-S.: A nanoindentation study of the mechanical properties of ZnO thin films on (0001) sapphire. Appl. Surf. Sci. 253(2), 464 (2006).Google Scholar
Schuh, C., Nieh, T., and Kawamura, Y.: Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J. Mater. Res. 17(07), 1651 (2002).Google Scholar
Misra, D.K., Sohn, S.W., Kim, W.T., and Kim, D.H.: Rate-dependent serrated flow and plastic deformation in Ti45Zr16Be20Cu10Ni9 bulk amorphous alloy during nanoindentation. Sci. Technol. Adv. Mater. 9(4), 45004 (2016).Google Scholar
Kucheyev, S., Bradby, J., Williams, J., Jagadish, C., and Swain, M.: Mechanical deformation of single-crystal ZnO. Appl. Phys. Lett. 80(6), 956 (2002).Google Scholar
Fang, T-H., Chang, W-J., and Lin, C-M.: Nanoindentation characterization of ZnO thin films. Mater. Sci. Eng., A 452, 715 (2007).Google Scholar
Li, J., Van Vliet, K.J., Zhu, T., Yip, S., and Suresh, S.: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418(6895), 307 (2002).Google Scholar
Gayle, A.J. and Cook, R.F.: Mapping viscoelastic and plastic properties of polymers and polymer-nanotube composites using instrumented indentation. J. Mater. Res. 31(15), 2347 (2016).Google Scholar
Musil, J.: Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surf. Coat. Technol. 207, 50 (2012).CrossRefGoogle Scholar
Blees, M., Winkelman, G., Balkenende, A., and Den Toonder, J.: The effect of friction on scratch adhesion testing: Application to a sol–gel coating on polypropylene. Thin Solid Films 359(1), 1 (2000).Google Scholar
Deyneka-Dupriez, N., Herr, U., Fecht, H., Pfrang, A., Schimmel, T., Reznik, B., and Gerthsen, D.: Interfacial adhesion and friction of pyrolytic carbon thin films on silicon substrates. J. Mater. Res. 23(10), 2749 (2008).Google Scholar
Zhang, S., Sun, D., Fu, Y., and Du, H.: Effect of sputtering target power on microstructure and mechanical properties of nanocomposite nc-TiN/a-SiN x thin films. Thin Solid Films 447, 462 (2004).Google Scholar
Benjamin, P. and Weaver, C.: Measurement of adhesion of thin films. Proc. R. Soc. London, Ser. A 254(1277), 163 (1960).Google Scholar
Jian, S-R., Teng, I-J., Yang, P-F., Lai, Y-S., Lu, J-M., Chang, J-G., and Ju, S-P.: Surface morphological and nanomechanical properties of PLD-derived ZnO thin films. Nanoscale Res. Lett. 3(5), 186 (2008).Google Scholar
Bhushan, B. and Li, X.: Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices. J. Mater. Res. 12(1), 54 (1997).Google Scholar
Thornton, J.A.: The microstructure of sputter-deposited coatings. J. Vac. Sci. Technol., A 4(6), 3059 (1986).Google Scholar