Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T16:48:40.885Z Has data issue: false hasContentIssue false

Additive nanomanufacturing – A review

Published online by Cambridge University Press:  04 August 2014

D.S. Engstrom
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
B. Porter
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
M. Pacios
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
H. Bhaskaran*
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Additive manufacturing has provided a pathway for inexpensive and flexible manufacturing of specialized components and one-off parts. At the nanoscale, such techniques are less ubiquitous. Manufacturing at the nanoscale is dominated by lithography tools that are too expensive for small- and medium-sized enterprises (SMEs) to invest in. Additive nanomanufacturing (ANM) empowers smaller facilities to design, create, and manufacture on their own while providing a wider material selection and flexible design. This is especially important as nanomanufacturing thus far is largely constrained to 2-dimensional patterning techniques and being able to manufacture in 3-dimensions could open up new concepts. In this review, we outline the state-of-the-art within ANM technologies such as electrohydrodynamic jet printing, dip-pen lithography, direct laser writing, and several single particle placement methods such as optical tweezers and electrokinetic nanomanipulation. The ANM technologies are compared in terms of deposition speed, resolution, and material selection and finally the future prospects of ANM are discussed. This review is up-to-date until April 2014.

Type
Review Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Feenstra, F., Schaefer, M., Jay, O., and Scudamore, R.: Additive Manufacturing: Strategic Research Agenda. AM Platform: The European collaboration on Additive Manufacturing 1(1), 1 (2013).Google Scholar
Boland, T., Ovsianikov, A., Chickov, B.N., Doraiswamy, A., Narayan, R.J., Yeong, W.Y., Leong, K.F., and Chua, C.K.: Rapid prototyping of artificial tissues and medical devices. Adv. Mater. Processess 165(4), 51 (2007).Google Scholar
Zein, I., Hutmacher, D.W., Tan, K.C., and Teoh, S.H.: Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4), 1169 (2002).CrossRefGoogle ScholarPubMed
Arias, A.C., MacKenzie, J.D., McCulloch, I., Rivnay, J., and Salleo, A.: Materials and applications for large area electronics: Solution-based approaches. Chem. Rev. 110(1), 3 (2010).CrossRefGoogle Scholar
Zhang, L.L., Zhao, X., Stoller, M.D., Zhu, Y.W., Ji, H.X., Murali, S., Wu, Y.P., Perales, S., Clevenger, B., and Ruoff, R.S.: Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 12(4), 1806 (2012).CrossRefGoogle ScholarPubMed
Duffy, D.C., McDonald, J.C., Schueller, O.J.A., and Whitesides, G.M.: Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70(23), 4974 (1998).CrossRefGoogle ScholarPubMed
Unger, M.A., Chou, H.P., Thorsen, T., Scherer, A., and Quake, S.R.: Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463), 113 (2000).CrossRefGoogle ScholarPubMed
van Noort, R.: The future of dental devices is digital. Dent. Mater. 28(1), 3 (2012).CrossRefGoogle ScholarPubMed
Ryan, G., Pandit, A., and Apatsidis, D.P.: Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27(13), 2651 (2006).CrossRefGoogle ScholarPubMed
Giannatsis, J. and Dedoussis, V.: Additive fabrication technologies applied to medicine and health care: A review. Int. J. Adv. Manuf. Technol. 40(1–2), 116 (2009).CrossRefGoogle Scholar
Narayan, R.J., Doraiswamy, A., Chrisey, D.B., and Chichkov, B.N.: Medical prototyping using two photon polymerization. Mater. Today 13(12), 42 (2010).CrossRefGoogle Scholar
Gu, D.D., Meiners, W., Wissenbach, K., and Poprawe, R.: Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 57(3), 133 (2012).CrossRefGoogle Scholar
Jang, Y., Tambunan, I.H., Tak, H., Nguyen, V.D., Kang, T., and Byun, D.: Non-contact printing of high aspect ratio Ag electrodes for polycrystalline silicone solar cell with electrohydrodynamic jet printing. Appl. Phys. Lett. 102(12), 123901 (2013).CrossRefGoogle Scholar
Krebs, F.C.: Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93(4), 394 (2009).CrossRefGoogle Scholar
Mark, A.G., Gibbs, J.G., Lee, T.C., and Fischer, P.: Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 12(9), 802 (2013).CrossRefGoogle ScholarPubMed
Park, J.U., Hardy, M., Kang, S.J., Barton, K., Adair, K., Mukhopadhyay, D.K., Lee, C.Y., Strano, M.S., Alleyne, A.G., Georgiadis, J.G., Ferreira, P.M., and Rogers, J.A.: High-resolution electrohydrodynamic jet printing. Nat. Mater. 6(10), 782 (2007).CrossRefGoogle ScholarPubMed
Min, S.Y., Kim, T.S., Kim, B.J., Cho, H., Noh, Y.Y., Yang, H., Cho, J.H., and Lee, T.W.: Large-scale organic nanowire lithography and electronics. Nat. Commun. 4, 1773 (2013).CrossRefGoogle ScholarPubMed
Wagner, C. and Harned, N.: EUV lithography: Lithography gets extreme. Nat. Photonics 4(1), 24 (2010).CrossRefGoogle Scholar
Manfrinato, V.R., Zhang, L.H., Su, D., Duan, H.G., Hobbs, R.G., Stach, E.A., and Berggren, K.K.: Resolution limits of electron-beam lithography toward the atomic scale. Nano Lett. 13(4), 1555 (2013).CrossRefGoogle ScholarPubMed
Williams, E.D., Ayres, R.U., and Heller, M.: The 1.7 kilogram microchip: Energy and material use in the production of semiconductor devices. Environ. Sci. Technol. 36(24), 5504 (2002).CrossRefGoogle ScholarPubMed
Couchman, P.R. and Jesser, W.A.: Thermodynamic theory of size dependence of melting temperature in metals. Nature 269(5628), 481 (1977).CrossRefGoogle Scholar
Allen, G.L., Bayles, R.A., Gile, W.W., and Jesser, W.A.: Small particle melting of pure metals. Thin Solid Films 144(2), 297 (1986).CrossRefGoogle Scholar
Ginger, D.S., Zhang, H., and Mirkin, C.A.: The evolution of dip-pen nanolithography. Angew. Chem., Int. Ed. 43(1), 30 (2004).CrossRefGoogle ScholarPubMed
Binnig, G., Rohrer, H., Gerber, C., and Weibel, E.: Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49(1), 57 (1982).CrossRefGoogle Scholar
Binnig, G., Quate, C.F., and Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56(9), 930 (1986).CrossRefGoogle ScholarPubMed
Gimzewski, J.K. and Joachim, C.: Nanoscale science of single molecules using local probes. Science 283(5408), 1683 (1999).CrossRefGoogle ScholarPubMed
Eigler, D.M. and Schweizer, E.K.: Positioning single atoms with a scanning tunnelling microscope. Nature 344(6266), 524 (1990).CrossRefGoogle Scholar
Xia, Y. and Whitesides, G.M.: Soft lithography. Angew. Chem. Int. Ed. 37(5), 550 (1998).3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Liu, J-F., Cruchon-Dupeyrat, S., Garno, J.C., Frommer, J., and Liu, G-Y.: Three-dimensional nanostructure construction via nanografting: Positive and negative pattern transfer. Nano Lett. 2(9), 937 (2002).CrossRefGoogle Scholar
Minne, S.C., Manalis, S.R., Atalar, A., and Quate, C.F.: Independent parallel lithography using the atomic force microscope. J. Vac. Sci. Technol., B 14(4), 2456 (1996).CrossRefGoogle Scholar
Minne, S.C., Adams, J.D., Yaralioglu, G., Manalis, S.R., Atalar, A., and Quate, C.F.: Centimeter scale atomic force microscope imaging and lithography. Appl. Phys. Lett. 73(12), 1742 (1998).CrossRefGoogle Scholar
Salaita, K., Wang, Y., and Mirkin, C.A.: Applications of dip-pen nanolithography. Nat. Nanotechnol. 2(3), 145 (2007).CrossRefGoogle ScholarPubMed
Gates, B.D., Xu, Q., Stewart, M., Ryan, D., Willson, C.G., and Whitesides, G.M.: New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 105(4), 1171 (2005).CrossRefGoogle ScholarPubMed
Zhang, H. and Mirkin, C.A.: DPN-generated nanostructures made of gold, silver, and palladium. Chem. Mater. 16(8), 1480 (2004).CrossRefGoogle Scholar
Brown, K., Eichelsdoerfer, D., Liao, X., He, S., and Mirkin, C.: Material transport in dip-pen nanolithography. Front. Phys. 9(3), 385 (2014).CrossRefGoogle Scholar
Piner, R.D., Zhu, J., Xu, F., Hong, S., and Mirkin, C.A.: Dip-pen nanolithography. Science 283(5402), 661 (1999).CrossRefGoogle ScholarPubMed
Nyamjav, D. and Ivanisevic, A.: Properties of polyelectrolyte templates generated by dip-pen nanolithography and microcontact printing. Chem. Mater. 16(25), 5216 (2004).CrossRefGoogle Scholar
Suriano, R., Biella, S., Cesura, F., Levi, M., and Turri, S.: Thermoplastic polymers surfaces for dip-pen nanolithography of oligonucleotides. Appl. Surf. Sci. 273, 717 (2013).CrossRefGoogle Scholar
Park, S., Lee, H.W., Wang, H., Selvarasah, S., Dokmeci, M.R., Park, Y.J., Cha, S.N., Kim, J.M., and Bao, Z.: Highly effective separation of semiconducting carbon nanotubes verified via short-channel devices fabricated using dip-pen nanolithography. ACS Nano 6(3), 2487 (2012).CrossRefGoogle ScholarPubMed
Wang, Y., Maspoch, D., Zou, S., Schatz, G.C., Smalley, R.E., and Mirkin, C.A.: Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc. Natl. Acad. Sci. U. S. A. 103(7), 2026 (2006).CrossRefGoogle ScholarPubMed
Li, Y., Maynor, B.W., and Liu, J.: Electrochemical AFM “dip-pen”' nanolithography. J. Am. Chem. Soc. 123(9), 2105 (2001).CrossRefGoogle ScholarPubMed
Fu, L., Liu, X., Zhang, Y., Dravid, V.P., and Mirkin, C.A.: Nanopatterning of “hard” magnetic nanostructures via dip-pen nanolithography and a sol-based ink. Nano Lett. 3(6), 757 (2003).CrossRefGoogle Scholar
Lenhert, S., Sun, P., Wang, Y., Fuchs, H., and Mirkin, C.A.: Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns. Small 3(1), 71 (2007).CrossRefGoogle ScholarPubMed
Hirtz, M., Antonios, O., Thanasis, G., Harald, F., and Aravind, V.: Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography. Nat. Commun. 4, (2013).CrossRefGoogle ScholarPubMed
Lee, K-B., Park, S-J., Mirkin, C.A., Smith, J.C., and Mrksich, M.: Protein nanoarrays generated by dip-pen nanolithography. Science 295(5560), 1702 (2002).CrossRefGoogle ScholarPubMed
Lee, K-B., Lim, J-H., and Mirkin, C.A.: Protein nanostructures formed via direct-write dip-pen nanolithography. J. Am. Chem. Soc. 125(19), 5588 (2003).CrossRefGoogle ScholarPubMed
Demers, L.M., Ginger, D.S., Park, S-J., Li, Z., Chung, S-W., and Mirkin, C.A.: Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296(5574), 1836 (2002).CrossRefGoogle ScholarPubMed
Vega, R.A., Shen, C.K.F., Maspoch, D., Robach, J.G., Lamb, R.A., and Mirkin, C.A.: Monitoring single-cell infectivity from virus-particle nanoarrays fabricated by parallel dip-pen nanolithography. Small 3(9), 1482 (2007).CrossRefGoogle ScholarPubMed
Cronin, S.D., Sabolsky, K., Sabolsky, E.M., and Sierros, K.A.: Dip pen nanolithography and transfer of ZnO patterns on plastics for large-area flexible optoelectronic applications. Thin Solid Films 552, 50 (2014).CrossRefGoogle Scholar
Salaita, K., Wang, Y., Fragala, J., Vega, R.A., Liu, C., and Mirkin, C.A.: Massively parallel dip–pen nanolithography with 55 000-pen two-dimensional arrays. Angew. Chem. Int. Ed. 45(43), 7220 (2006).CrossRefGoogle ScholarPubMed
Shim, W., Braunschweig, A.B., Liao, X., Chai, J.N., Lim, J.K., Zheng, G.F., and Mirkin, C.A.: Hard-tip, soft-spring lithography. Nature 469(7331), 516 (2011).CrossRefGoogle ScholarPubMed
Giam, L.R. and Mirkin, C.A.: Cantilever-free scanning probe molecular printing. Angew. Chem. Int. Ed. 50(33), 7482 (2011).CrossRefGoogle ScholarPubMed
Huo, F., Zheng, Z., Zheng, G., Giam, L.R., Zhang, H., and Mirkin, C.A.: Polymer pen lithography. Science 321(5896), 1658 (2008).CrossRefGoogle ScholarPubMed
Chai, J., Huo, F., Zheng, Z., Giam, L.R., Shim, W., and Mirkin, C.A.: Scanning probe block copolymer lithography. Proce. Natl. Acad. Sci. 107(47), 20202 (2010).CrossRefGoogle ScholarPubMed
Liu, G., Eichelsdoerfer, D.J., Rasin, B., Zhou, Y., Brown, K.A., Liao, X., and Mirkin, C.A.: Delineating the pathways for the site-directed synthesis of individual nanoparticles on surfaces. Proc. Natl. Acad. Sci. 110(3), 887 (2013).CrossRefGoogle ScholarPubMed
Chai, J., Wong, L.S., Giam, L., and Mirkin, C.A.: Single-molecule protein arrays enabled by scanning probe block copolymer lithography. Proc. Natl. Acad. Sci. 108(49), 19521 (2011).CrossRefGoogle ScholarPubMed
Brown, K.A., Eichelsdoerfer, D.J., Shim, W., Rasin, B., Radha, B., Liao, X., Schmucker, A.L., Liu, G., and Mirkin, C.A.: A cantilever-free approach to dot-matrix nanoprinting. Proc. Natl. Acad. Sci. 110(32), 12921 (2013).CrossRefGoogle ScholarPubMed
Bian, S.D., Zieba, S.B., Morris, W., Han, X., Richter, D.C., Brown, K.A., Mirkin, C.A., and Braunschweig, A.B.: Beam pen lithography as a new tool for spatially controlled photochemistry, and its utilization in the synthesis of multivalent glycan arrays. Chem. Sci. 5(5), 2023 (2014).CrossRefGoogle ScholarPubMed
Curran, J.M., Chen, R., Stokes, R., Irvine, E., Graham, D., Gubbins, E., Delaney, D., Amro, N., Sanedrin, R., Jamil, H., and Hunt, J.A.: Nanoscale definition of substrate materials to direct human adult stem cells towards tissue specific populations. J. Mater. Sci. Mater. Med. 21(3), 1021 (2010).CrossRefGoogle ScholarPubMed
Sekula, S., Fuchs, J., Weg-Remers, S., Nagel, P., Schuppler, S., Fragala, J., Theilacker, N., Franueb, M., Wingren, C., Ellmark, P., Borrebaeck, C.A.K., Mirkin, C.A., Fuchs, H., and Lenhert, S.: Multiplexed lipid dip-pen nanolithography on subcellular scales for the templating of functional proteins and cell culture. Small 4(10), 1785 (2008).CrossRefGoogle ScholarPubMed
Mitsakakis, K., Sekula-Neuner, S., Lenhert, S., Fuchs, H., and Gizeli, E.: Convergence of dip-pen nanolithography and acoustic biosensors towards a rapid-analysis multi-sample microsystem. Analyst 137(13), 3076 (2012).CrossRefGoogle ScholarPubMed
Zhou, X.Z., Boey, F., Huo, F.W., Huang, L., and Zhang, H.: Chemically functionalized surface patterning. Small 7(16), 2273 (2011).CrossRefGoogle ScholarPubMed
Wu, C.C., Reinhoudt, D.N., Otto, C., Subramaniam, V., and Velders, A.H.: Strategies for patterning biomolecules with dip-pen nanolithography. Small 7(8), 989 (2011).CrossRefGoogle ScholarPubMed
Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M.A., Despont, M., Jaroenapibal, P., Carpick, R.W., Chen, Y., and Sridharan, K.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5(3), 181 (2010).CrossRefGoogle ScholarPubMed
Bhaskaran, H., Sebastian, A., and Despont, M.: Nanoscale PtSi tips for conducting probe technologies. IEEE. Trans. Nanotechnol. 8(1), 128 (2009).CrossRefGoogle Scholar
Bhaskaran, H., Sebastian, A., Drechsler, U., and Despont, M.: Encapsulated tips for reliable nanoscale conduction in scanning probe technologies. Nanotechnology 20 (10), 105701 (2009).CrossRefGoogle ScholarPubMed
Fletcher, P.C., Felts, J.R., Dai, Z.T., Jacobs, T.D., Zeng, H.J., Lee, W., Sheehan, P.E., Carlisle, J.A., Carpick, R.W., and King, W.P.: Wear-resistant diamond nanoprobe tips with integrated silicon heater for tip-based nanomanufacturing. ACS Nano 4(6), 3338 (2010).CrossRefGoogle ScholarPubMed
Delaney, J.T., Smith, P.J., and Schubert, U.S.: Inkjet printing of proteins. Soft Matter 5(24), 4866 (2009).CrossRefGoogle Scholar
Fuller, S.B., Wilhelm, E.J., and Jacobson, J.M.: Ink-jet printed nanoparticle microelectromechanical systems. J. Microelectromech. Syst. 11(1), 54 (2002).CrossRefGoogle Scholar
Barrero, A. and Loscertales, I.G.: Micro- and nanoparticles via capillary flows. Annu. Rev. Fluid Mech. 39, 89 (2007).CrossRefGoogle Scholar
Choi, H.K., Park, J.U., Park, O.O., Ferreira, P.M., Georgiadis, J.G., and Rogers, J.A.: Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic printing. Appl. Phys. Lett. 92(12), 123109 (2008).CrossRefGoogle Scholar
Galliker, P., Schneider, J., Eghlidi, H., Kress, S., Sandoghdar, V., and Poulikakos, D.: Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets. Nat. Commun. 3, 890 (2012).CrossRefGoogle ScholarPubMed
Onses, M.S., Song, C., Williamson, L., Sutanto, E., Ferreira, P.M., Alleyne, A.G., Nealey, P.F., Ahn, H., and Rogers, J.A.: Hierarchical patterns of three-dimensional block-copolymer films formed by electrohydrodynamic jet printing and self-assembly. Nat. Nanotechnol. 8(9), 667 (2013).CrossRefGoogle ScholarPubMed
Huang, Y., Bu, N., Duan, Y., Pan, Y., Liu, H., Yin, Z., and Xiong, Y.: Electrohydrodynamic direct-writing. Nanoscale 5(24), 12007 (2013).CrossRefGoogle ScholarPubMed
Sundaray, B., Subramanian, V., Natarajan, T.S., Xiang, R.Z., Chang, C.C., and Fann, W.S.: Electrospinning of continuous aligned polymer fibers. Appl. Phys. Lett. 84(7), 1222 (2004).CrossRefGoogle Scholar
Huang, Y.A., Wang, X.M., Duan, Y.Q., Bu, N.B., and Yin, Z.P.: Controllable self-organization of colloid microarrays based on finite length effects of electrospun ribbons. Soft Matter 8(32), 8302 (2012).CrossRefGoogle Scholar
Bisht, G.S., Canton, G., Mirsepassi, A., Kuinsky, L., Oh, S., Dunn-Rankin, D., and Madou, M.J.: Controlled continuous patterning of polymeric nanofibers on three-dimensional substrates using low-voltage near-field electrospinning. Nano Lett. 11(4), 1831 (2011).CrossRefGoogle ScholarPubMed
Bu, N., Huang, Y., Wang, X., and Yin, Z.: Continuously tunable and oriented nanofiber direct-written by mechano-electrospinning. Mater. Manuf. Processes 27(12), 1318 (2012).CrossRefGoogle Scholar
Lee, M. and Kim, H.Y.: Toward nanoscale three-dimensional printing: Nanowalls built of electrospun nanofibers. Langmuir 30(5), 1210 (2014).CrossRefGoogle ScholarPubMed
Li, D. and Xia, Y.N.: Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 4(5), 933 (2004).CrossRefGoogle Scholar
Zhang, Y.Z., Wang, X., Feng, Y., Li, J., Lim, C.T., and Ramakrishna, S.: Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release. Biomacromolecules 7(4), 1049 (2006).CrossRefGoogle ScholarPubMed
Wang, D.Z., Jayasinghe, S.N., Edirisinghe, M.J., and Luklinska, Z.B.: Coaxial electrohydrodynamic direct writing of nano-suspensions. J. Nanopart. Res. 9(5), 825 (2007).CrossRefGoogle Scholar
Nuansing, W., Frauchiger, D., Huth, F., Rebollo, A., Hillenbrand, R., and Bittner, A.M.: Electrospinning of peptide and protein fibres: Approaching the molecular scale. Faraday Discuss. 166, 209 (2013).CrossRefGoogle ScholarPubMed
Salata, O.V.: Tools of nanotechnology: Electrospray. Curr. Nanosci. 1(1), 25 (2005).CrossRefGoogle Scholar
Jaworek, A. and Sobczyk, A.T.: Electrospraying route to nanotechnology: An overview. J. Electrostat. 66(3–4), 197 (2008).CrossRefGoogle Scholar
Lee, D.Y., Shin, Y.S., Park, S.E., Yu, T.U., and Hwang, J.: Electrohydrodynamic printing of silver nanoparticles by using a focused nanocolloid jet. Appl. Phys. Lett. 90(8), 081905 (2007).CrossRefGoogle Scholar
Fischer, J., Ergin, T., and Wegener, M.: Three-dimensional polarization-independent visible-frequency carpet invisibility cloak. Opt. Lett. 36(11), 2059 (2011).CrossRefGoogle ScholarPubMed
Xu, B-B., Xia, H., Niu, L-G., Zhang, Y-L., Sun, K., Chen, Q-D., Xu, Y., Lv, Z-Q., Li, Z-H., Misawa, H., and Sun, H-B.: Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating. Small 6(16), 1762 (2010).CrossRefGoogle ScholarPubMed
Fischer, J. and Wegener, M.: Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy. Opt. Mater. Express 1(4), 614 (2011).CrossRefGoogle Scholar
Cao, Y. and Gu, M.: λ/26 silver nanodots fabricated by direct laser writing through highly sensitive two-photon photoreduction. Appl. Phys. Lett. 103(21), 213104 (2013).CrossRefGoogle Scholar
Kawata, S., Sun, H.B., Tanaka, T., and Takada, K.: Finer features for functional microdevices. Nature 412(6848), 697 (2001).CrossRefGoogle ScholarPubMed
Deubel, M., von Freymann, G., Wegener, M., Pereira, S., Busch, K., and Soukoulis, C.M.: Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3(7), 444 (2004).CrossRefGoogle ScholarPubMed
Ergin, T., Stenger, N., Brenner, P., Pendry, J.B., and Wegener, M.: Three-dimensional invisibility cloak at optical wavelengths. Science 328(5976), 337 (2010).CrossRefGoogle ScholarPubMed
Röhrig, M., Thiel, M., Worgull, M., and Hölscher, H.: 3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces. Small 8(19), 3009 (2012).CrossRefGoogle ScholarPubMed
Li, X., Cao, Y., and Gu, M.: Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam. Opt. Lett. 36(13), 2510 (2011).CrossRefGoogle ScholarPubMed
Kabouraki, E., Giakoumaki, A.N., Danilevicius, P., Gray, D., Vamvakaki, M., and Farsari, M.: Redox multiphoton polymerization for 3D nanofabrication. Nano Lett. 13(8), 3831 (2013).CrossRefGoogle ScholarPubMed
Vasilantonakis, N., Terzaki, K., Sakellari, I., Purlys, V., Gray, D., Soukoulis, C.M., Vamvakaki, M., Kafesaki, M., and Farsari, M.: Three-dimensional metallic photonic crystals with optical bandgaps. Adv. Mater. 24(8), 1101 (2012).CrossRefGoogle ScholarPubMed
Staude, I., Decker, M., Ventura, M.J., Jagadish, C., Neshev, D.N., Gu, M., and Kivshar, Y.S.: Hybrid high-resolution three-dimensional nanofabrication for metamaterials and nanoplasmonics. Adv. Mater. 25(9), 1260 (2013).CrossRefGoogle ScholarPubMed
Frölich, A., Fischer, J., Zebrowski, T., Busch, K., and Wegener, M.: Titania woodpiles with complete three-dimensional photonic bandgaps in the visible. Adv. Mater. 25(26), 3588 (2013).CrossRefGoogle ScholarPubMed
Fischer, J. and Wegener, M.: Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev. 7(1), 22 (2013).CrossRefGoogle Scholar
Cao, Y., Gan, Z., Jia, B., Evans, R.A., and Gu, M.: High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization. Opt. Express 19(20), 19486 (2011).CrossRefGoogle ScholarPubMed
Rittweger, E., Han, K.Y., Irvine, S.E., Eggeling, C., and Hell, S.W.: STED microscopy reveals crystal colour centres with nanometric resolution. Nat. Photonics 3(3), 144 (2009).CrossRefGoogle Scholar
Fischer, J., von Freymann, G., and Wegener, M.: The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv. Mater. 22(32), 3578 (2010).CrossRefGoogle ScholarPubMed
El-Kady, M.F. and Kaner, R.B.: Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013).CrossRefGoogle ScholarPubMed
Park, J.B., Xiong, W., Gao, Y., Qian, M., Xie, Z.Q., Mitchell, M., Zhou, Y.S., Han, G.H., Jiang, L., and Lu, Y.F.: Fast growth of graphene patterns by laser direct writing. Appl. Phys. Lett. 98(12), 123109 (2011).CrossRefGoogle Scholar
Kwok, K. and Chiu, W.K.S.: Growth of carbon nanotubes by open-air laser-induced chemical vapor deposition. Carbon 43(2), 437 (2005).CrossRefGoogle Scholar
Mahjouri-Samani, M., Zhou, Y.S., Xiong, W., Gao, Y., Mitchell, M., Jiang, L., and Lu, Y.F.: Diameter modulation by fast temperature control in laser-assisted chemical vapor deposition of single-walled carbon nanotubes. Nanotechnology 21(39), 395601 (2010).CrossRefGoogle ScholarPubMed
Hong, S., Yeo, J., Kim, G., Kim, D., Lee, H.H., Kwon, J., Lee, P., and Ko, S.H.: Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS Nano 7(6), 5024 (2013).CrossRefGoogle ScholarPubMed
Liao, X., Brown, K.A., Schmucker, A.L., Liu, G.L., He, S., Shim, W., and Mirkin, C.A.: Desktop nanofabrication with massively multiplexed beam pen lithography. Nat. Commun. 4, 2103 (2013).CrossRefGoogle ScholarPubMed
Leggett, G.J.: Scanning near-field photolithography-surface photochemistry with nanoscale spatial resolution. Chem. Soc. Rev. 35(11), 1150 (2006).CrossRefGoogle ScholarPubMed
ul Haq, E., Liu, Z.M., Zhang, Y.A., Ahmad, S.A.A., Wong, L.S., Armes, S.P., Hobbs, J.K., Leggett, G.J., Micklefield, J., Roberts, C.J., and Weaver, J.M.R.: Parallel scanning near-field photolithography: The snomipede. Nano Lett. 10(11), 4375 (2010).CrossRefGoogle ScholarPubMed
Srituravanich, W., Pan, L., Wang, Y., Sun, C., Bogy, D.B., and Zhang, X.: Flying plasmonic lens in the near field for high-speed nanolithography. Nat. Nanotechnol. 3(12), 733 (2008).CrossRefGoogle ScholarPubMed
Sugimoto, Y., Abe, M., Hirayama, S., Oyabu, N., Custance, O., and Morita, S.: Atom inlays performed at room temperature using atomic force microscopy. Nat. Mater. 4(2), 156 (2005).CrossRefGoogle ScholarPubMed
Custance, O., Perez, R., and Morita, S.: Atomic force microscopy as a tool for atom manipulation. Nat. Nanotechnol. 4(12), 803 (2009).CrossRefGoogle ScholarPubMed
Gohlke, D., Mishra, R., Restrepo, O.D., Lee, D., Windl, W., and Gupta, J.: Atomic-scale engineering of the electrostatic landscape of semiconductor surfaces. Nano Lett. 13(6), 2418 (2013).CrossRefGoogle ScholarPubMed
Olyanich, D.A., Kotlyar, V.G., Utas, T.V., Zotov, A.V., and Saranin, A.A.: The manipulation of C-60 in molecular arrays with an STM tip in regimes below the decomposition threshold. Nanotechnology 24(5), 055302 (2013).CrossRefGoogle ScholarPubMed
Morgenstern, K., Lorente, N., and Rieder, K.H.: Controlled manipulation of single atoms and small molecules using the scanning tunnelling microscope. Phys. Status Solidi B 250(9), 1671 (2013).CrossRefGoogle Scholar
Fuechsle, M., Miwa, J.A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L.C.L., Klimeck, G., and Simmons, M.Y.: A single-atom transistor. Nat. Nanotechnol. 7(4), 242 (2012).CrossRefGoogle ScholarPubMed
Qin, S.Y., Kim, T.H., Wang, Z.H., and Li, A.P.: Nanomanipulation and nanofabrication with multi-probe scanning tunneling microscope: From individual atoms to nanowires. Rev. Sci. Instrum. 83(6), 063704 (2012).CrossRefGoogle ScholarPubMed
Molhave, K., Wich, T., Kortschack, A., and Boggild, P.: Pick-and-place nanomanipulation using microfabricated grippers. Nanotechnology 17(10), 2434 (2006).CrossRefGoogle ScholarPubMed
Sardan, O., Eichhorn, V., Petersen, D.H., Fatikow, S., Sigmund, O., and Boggild, P.: Rapid prototyping of nanotube-based devices using topology-optimized microgrippers. Nanotechnology 19(49), 495503 (2008).CrossRefGoogle ScholarPubMed
Cagliani, A., Wierzbicki, R., Occhipinti, L., Petersen, D.H., Dyvelkov, K.N., Sukas, O.S., Herstrom, B.G., Booth, T., and Boggild, P.: Manipulation and in situ transmission electron microscope characterization of sub-100 nm nanostructures using a microfabricated nanogripper. J. Micromech. Microeng. 20(3), 035009 (2010).CrossRefGoogle Scholar
Kim, S., Ratchford, D.C., and Li, X.: Atomic force microscope nanomanipulation with simultaneous visual guidance. ACS Nano 3(10), 2989 (2009).CrossRefGoogle ScholarPubMed
Kim, S., Shafiei, F., Ratchford, D., and Li, X.: Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures. Nanotechnology 22(11), 115301 (2011).CrossRefGoogle ScholarPubMed
Castillo, J., Dimaki, M., and Svendsen, W.E.: Manipulation of biological samples using micro and nano techniques. Integr. Biol. 1(1), 30 (2009).CrossRefGoogle ScholarPubMed
Junno, T., Deppert, K., Montelius, L., and Samuelson, L.: Controlled manipulation of nanoparticles with an atomic force microscope. Appl. Phys. Lett. 66(26), 3627 (1995).CrossRefGoogle Scholar
Li, G., Xi, N., Yu, M., and Fung, W-K.: Development of augmented reality system for AFM-based nanomanipulation. IEEE Trans. Nanotechnol. 9(2), 358 (2004).Google Scholar
Li, G., Xi, N., Chen, H., Pomeroy, C., and Prokos, M.: “Videolized” atomic force microscopy for interactive nanomanipulation and nanoassembly. IEEE Trans. Nanotechnol. 4(5), 605 (2005).CrossRefGoogle Scholar
Xi, N. and Li, G.: Introduction to Nanorobotic Manipulation and Assembly (Artech House, Norwood, 2012), p. 1.Google Scholar
Zhang, J., Member, S., Xi, N., and Chen, H.: Design, manufacturing, and testing of single-carbon-nanotube-based infrared sensors. IEEE Trans. Nanotechnol. 8(2), 245 (2009).CrossRefGoogle Scholar
Xiong, X., Makaram, P., Busnaina, A., Bakhtari, K., Somu, S., McGruer, N., and Park, J.: Large scale directed assembly of nanoparticles using nanotrench templates. Appl. Phys. Lett. 89(19), 193108 (2006).CrossRefGoogle Scholar
Park, J-U., Lee, S., Unarunotai, S., Sun, Y., Dunham, S., Song, T., Ferreira, P.M., Alleyene, A.G., and Paik, U., and Rogers, J.A.: Nanoscale, electrified liquid jets for high-resolution printing of charge. Nano Lett. 10(2), 584 (2010).CrossRefGoogle ScholarPubMed
Kolíbal, M., Konečný, M., Ligmajer, F., Škoda, D., Vystavěl, T., Zlámal, J., Varga, P., and Šikola, T.: Guided assembly of gold colloidal nanoparticles on silicon substrates prepatterned by charged particle beams. ACS Nano 6(11), 10098 (2012).CrossRefGoogle ScholarPubMed
Zhou, Y.S., Liu, Y., Zhu, G., Lin, Z-H., Pan, C., Jing, Q., and Wang, Z.L.: In situ quantitative study of nanoscale triboelectrification and patterning. Nano Lett. 13(6), 2771 (2013).CrossRefGoogle ScholarPubMed
Yilmaz, C., Kim, T-H., and Somu, S., and Busnaina, A.A.: Large-Scale nanorods nanomanufacturing by electric-field-directed assembly for nanoscale device applications. IEEE Trans. Nanotechnol. 9(5), 653 (2010).CrossRefGoogle Scholar
Wood, N.R., Wolsiefer, A.I., Cohn, R.W., and Williams, S.J.: Dielectrophoretic trapping of nanoparticles with an electrokinetic nanoprobe. Electrophoresis 34(13), 1922 (2013).CrossRefGoogle ScholarPubMed
Brown, K.A. and Westervelt, R.M.: Triaxial AFM probes for noncontact trapping and manipulation. Nano Lett. 11(8), 3197 (2011).CrossRefGoogle ScholarPubMed
Brown, K.A. and Westervelt, R.M.: Proposed triaxial atomic force microscope contact-free tweezers for nanoassembly. Nanotechnology 20(38), 385302 (2009).CrossRefGoogle ScholarPubMed
Jonás, A. and Zemánek, P.: Light at work: The use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 29(24), 4813 (2008).CrossRefGoogle ScholarPubMed
Tong, L., Miljković, V.D., and Käll, M.: Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett. 10(1), 268 (2010).CrossRefGoogle ScholarPubMed
Guffey, M.J. and Scherer, N.F.: All-optical patterning of Au nanoparticles on surfaces using optical traps. Nano Lett. 10(11), 4302 (2010).CrossRefGoogle ScholarPubMed
Yan, Z., Sweet, J., Jureller, J.E., Guffey, M.J., Pelton, M., and Scherer, N.F.: Controlling the position and orientation of single silver nanowires on a surface using structured optical fields. ACS Nano 6(9), 8144 (2012).CrossRefGoogle ScholarPubMed
Yan, Z., Shah, R.A., Chado, G., Gray, S.K., Pelton, M., and Scherer, N.F.: Guiding spatial arrangements of silver nanoparticles by optical binding interactions in shaped light fields. ACS Nano 7(2), 1790 (2013).CrossRefGoogle ScholarPubMed
Chen, Y-F., Serey, X., Sarkar, R., Chen, P., and Erickson, D.: Controlled photonic manipulation of proteins and other nanomaterials. Nano Lett. 12(3), 1633 (2012).CrossRefGoogle ScholarPubMed
Huang, H-W., Bhadrachalam, P., Ray, V., and Koh, S.J.: Single-particle placement via self-limiting electrostatic gating. Appl. Phys. Lett. 93(7), 073110 (2008).CrossRefGoogle Scholar
Berthelot, J., Aćimović, S.S., Juan, M.L., Kreuzer, M.P., Renger, J., and Quidant, R.: Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat. Nanotechnol. 9(4), 295 (2014).CrossRefGoogle ScholarPubMed
Fedoruk, M., Meixner, M., Carretero-Palacios, S., Lohmüller, T., and Feldmann, J.: Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles. ACS Nano 7(9), 7648 (2013).CrossRefGoogle ScholarPubMed
Bishop, K.J.M., Wilmer, C.E., Soh, S., and Grzybowski, B.A.: Nanoscale forces and their uses in self-assembly. Small 5(14), 1600 (2009).CrossRefGoogle ScholarPubMed
Sakakibara, K., Hill, J.P., and Ariga, K.: Thin-film-based nanoarchitectures for soft matter: Controlled assemblies into two-dimensional worlds. Small 7(10), 1288 (2011).CrossRefGoogle ScholarPubMed
Barrow, S.J., Funston, A.M., Wei, X.Z., and Mulvaney, P.: DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures. Nano Today 8(2), 138 (2013).CrossRefGoogle Scholar
Gong, J.X., Li, G.D., and Tang, Z.Y.: Self-assembly of noble metal nanocrystals: Fabrication, optical property, and application. Nano Today 7(6), 564 (2012).CrossRefGoogle Scholar
Bellido, E., Domingo, N., Ojea-Jimenez, I., and Ruiz-Molina, D.: Structuration and integration of magnetic nanoparticles on surfaces and devices. Small 8(10), 1465 (2012).CrossRefGoogle ScholarPubMed
Dong, B., Zhou, T., Zhang, H., and Li, C.Y.: Directed self-assembly of nanoparticles for nanomotors. ACS Nano 7(6), 5192 (2013).CrossRefGoogle ScholarPubMed
Galisteo-López, J.F., Ibisate, M., Sapienza, R., Froufe-Pérez, L.S., Blanco, A., and López, C.: Self-assembled photonic structures. Adv. Mater. 23(1), 30 (2011).CrossRefGoogle ScholarPubMed
Kim, F.S., Ren, G., and Jenekhe, S.A.: One-dimensional nanostructures of π-conjugated molecular systems: Assembly, properties, and applications from photovoltaics, sensors, and nanophotonics to nanoelectronics. Chem. Mater. 23(3), 682 (2011).CrossRefGoogle Scholar
Kraus, T., Malaquin, L., Schmid, H., Riess, W., Spencer, N.D., and Wolf, H.: Nanoparticle printing with single-particle resolution. Nat. Nanotechnol. 2(9), 570 (2007).CrossRefGoogle ScholarPubMed
Park, H., Afzali, A., Han, S-J., Tulevski, G.S., Franklin, A.D., Tersoff, J., Hannon, J.B., and Haensch, W.: High-density integration of carbon nanotubes via chemical self-assembly. Nat. Nanotechnol. 7(12), 787 (2012).CrossRefGoogle ScholarPubMed
Cui, Y., Bjork, M.T., Liddle, J.A., Sonnichsen, C., Boussert, B., and Alivisatos, A.P.: Integration of colloidal nanocrystals into lithographically patterned devices. Nano Lett. 4(6), 1093 (2004).CrossRefGoogle Scholar
Carlson, A., Bowen, A.M., Huang, Y.G., Nuzzo, R.G., and Rogers, J.A.: Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 24(39), 5284 (2012).CrossRefGoogle ScholarPubMed
Zheng, Y., Lalander, C.H., Thai, T., Dhuey, S., Cabrini, S., and Bach, U.: Gutenberg-style printing of self-assembled nanoparticle arrays: Electrostatic nanoparticle immobilization and DNA-mediated transfer. Angew. Chem., Int. Ed. Engl. 50(19), 4398 (2011).CrossRefGoogle ScholarPubMed
Porter, B.F., Abelmann, L., and Bhaskaran, H.: Design parameters for voltage-controllable directed assembly of single nanoparticles. Nanotechnology 24(40), 405304 (2013).CrossRefGoogle ScholarPubMed
Gooding, J.J. and Ciampi, S.: The molecular level modification of surfaces: From self-assembled monolayers to complex molecular assemblies. Chem. Soc. Rev. 40(5), 2704 (2011).CrossRefGoogle ScholarPubMed
Pulsipher, A. and Yousaf, M.N.: Surface chemistry and cell biological tools for the analysis of cell adhesion and migration. ChemBioChem 11(6), 745 (2010).CrossRefGoogle ScholarPubMed
Martinez, J., Martinez, R.V., and Garcia, R.: Silicon nanowire transistors with a channel width of 4 nm fabricated by atomic force microscope nanolithography. Nano Lett. 8(11), 3636 (2008).CrossRefGoogle ScholarPubMed
Hong, S. and Mirkin, C.A.: A nanoplotter with both parallel and serial writing capabilities. Science 288(5472), 1808 (2000).CrossRefGoogle ScholarPubMed
Hong, S., Zhu, J., and Mirkin, C.A.: Multiple ink nanolithography: Toward a multiple-pen nano-plotter. Science 286(5439), 523 (1999).CrossRefGoogle Scholar
Pena, D.J., Raphael, M.P., and Byers, J.M.: “Dip-Pen” nanolithography in registry with photolithography for biosensor development. Langmuir 19(21), 9028 (2003).CrossRefGoogle Scholar
Williams, E.: Energy intensity of computer manufacturing: Hybrid assessment combining process and economic input-output methods. Environ. Sci. Technol. 38(22), 6166 (2004).CrossRefGoogle ScholarPubMed
Kane, J., Inan, M., and Saraf, R.F.: Self-assembled nanoparticle necklaces network showing single-electron switching at room temperature and biogating current by living microorganisms. ACS Nano 4(1), 317 (2010).CrossRefGoogle ScholarPubMed
Bonzani, I.C., George, J.H., and Stevens, M.M.: Novel materials for bone and cartilage regeneration. Curr. Opin. Chem. Biol. 10(6), 568 (2006).CrossRefGoogle ScholarPubMed
Pham, Q.P., Sharma, U., and Mikos, A.G.: Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng. 12(5), 1197 (2006).CrossRefGoogle ScholarPubMed
Wang, B.C., Wang, Y.Z., Yin, T.Y., and Yu, Q.S.: Applications of electrospinning technique in drug delivery. Chem. Eng. Commun. 197(10), 1315 (2010).CrossRefGoogle Scholar
Brafman, D.A.: Constructing stem cell microenvironments using bioengineering approaches. Physiol. Genomics 45(23), 1123 (2013).CrossRefGoogle ScholarPubMed
Zhang, Y.B., Small, J.P., Pontius, W.V., and Kim, P.: Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett. 86(7), 073104 (2005).CrossRefGoogle Scholar