Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T18:59:35.692Z Has data issue: false hasContentIssue false

Activation of plasmons and polarons in solar control cesium tungsten bronze and reduced tungsten oxide nanoparticles

Published online by Cambridge University Press:  10 February 2012

Kenji Adachi*
Affiliation:
Ichikawa Research Laboratories, Sumitomo Metal Mining Co. Ltd., Ichikawa, Chiba 272-8588, Japan
Tsuyoshi Asahi
Affiliation:
Department of Applied Chemistry, Ehime University, Matsuyama Ehime 790-8577, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Dispersions of reduced tungsten oxide and tungsten bronze nanoparticles are known to show a remarkable absorption of near-infrared (NIR) light applicable to solar control filters for automotive and architectural windows. Origin of the NIR absorption has been investigated by analyzing dielectric constants of CsxWO3 (x = 0.15, 0.25, and 0.33) and WO2.72, and using Mie scattering theory. The optical analysis and Mie scattering theory analysis indicate that a localized surface plasmon resonance and polarons of localized electrons contribute alongside to the observed NIR absorption at different wavelengths.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kreibig, U. and Vollmer, M.: Optical properties of metal clusters; Springer Series, in Materials Science Vol. 25, edited by Toennies, J.P., (Springer-Verlag, New York, 1995). p. 25.Google Scholar
2.Kanehara, M., Koike, H., Yoshinaga, T., and Teranishi, T.: Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. J. Am. Chem. Soc. 131, 17736 (2009).Google Scholar
3.Fisher, W.K.: Polyvinylbutyral blends with lanthanum hexaboride for use in laminated solar control glazing, in Proceedings of the Glass Processing Days, Tampere, June 17–20, 2005, p. 110.Google Scholar
4.Takeda, H. and Adachi, K.: Near infrared absorption of tungsten oxide nanoparticle dispersions. J. Am. Ceram. Soc. 90, 4059 (2007).CrossRefGoogle Scholar
5.Takeda, H., Kuno, H., and Adachi, K.: Solar control dispersions and coatings with rare-earth hexaboride nanoparticles. J. Am. Ceram. Soc. 91, 2897 (2008).CrossRefGoogle Scholar
6.Adachi, K., Miratsu, M., and Asahi, T.: Absorption and scattering of near-infrared light by dispersed lanthanum hexaboride nanoparticles for solar control filters. J. Mater. Res. 25, 510 (2010).Google Scholar
7.Sato, Y., Terauchi, M., Mukai, M., Kaneyama, T., and Adachi, K.: High energy-resolution electron energy-loss spectroscopy of the dielectric properties of bulk and nanoparticle LaB6 in the near-infrared region. Ultramicroscopy 111, 1381 (2011).Google Scholar
8.zum Felde, U., Haase, M., and Weller, H.: Electrochromism of highly doped nanocrystalline SnO2:Sb. J. Phys. Chem. B 104, 9388 (2000).CrossRefGoogle Scholar
9.Shirmer, O.F., Wittwer, V., Baur, G., and Brandt, G.: Dependence of WO3 electrochromic absorption on crystallinity. J. Electrochem. Soc. 124, 749 (1977).Google Scholar
10.Salje, E. and Guttler, B.: Anderson transition and intermediate polaron formation in WO3-X transport properties and optical absorption. Philos. Mag. B 50, 607 (1984).CrossRefGoogle Scholar
11.Niklasson, G.A., Klasson, J., and Olsson, E.: Polaron absorption in tungsten oxide nanoparticle aggregates. Electrochim. Acta 46, 1967 (2001).CrossRefGoogle Scholar
12.Bange, K.: Colouration of tungsten oxide films: A model for optically active coatings. Sol. Energy Mater. Sol. Cells 58, 1 (1999).Google Scholar
13.Granqvist, C.G.: Electrochromic tungsten oxide films: Review of progress 1993-1998. Sol. Energy Mater. Sol. Cells 60, 201 (2000).Google Scholar
14.Deneuville, A. and Gerard, P.: Influence of substoichiometry, hydrogen content and crystallinity on the optical and electrical properties of HxWOy thin films. J. Electron. Mater. 7, 559 (1978).CrossRefGoogle Scholar
15.Green, M. and Travlos, A.: Sodium-tungsten bronze thin films I. Optical properties of dilute bronzes. Philos. Mag. B 51, 501 (1985).CrossRefGoogle Scholar
16.Miyakawa, M., Hosono, H., and Kawazoe, H.: Formation of hydrogen tungsten bronze by proton implantation. Mater. Res. Bull. 34, 115 (1999).Google Scholar
17.Hussain, A.: Phase analysis of potassium, rubidium and cesium tungsten bronzes. Acta Chem. Scand. A32, 479 (1978).Google Scholar
18.Antonaia, I.A., Santoro, M.C., Fameli, G., and Polichetti, T.: Transport mechanism and IR structural characterization of evaporated amorphous WO3 films. Thin Solid Films 426, 281 (2003).Google Scholar
19.Viswanathan, K., Brandt, K., and Salje, E.: Crystal structure and charge concentration of W18O49. J. Solid State Chem. 36, 45 (1981).Google Scholar
20.Boren, C.F. and Huffman, D.R.: Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1983).Google Scholar