Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T09:25:37.733Z Has data issue: false hasContentIssue false

Accuracy in the experimental calorimetric study of the crystallization kinetics and predictive transformation diagrams: Application to a Ga–Te amorphous alloy

Published online by Cambridge University Press:  31 January 2011

N. Clavaguera
Affiliation:
Grup de Física de L'Estat Sòlid, Departament d'Estructura i Constituents de la Matèria, Facultat de F’isica, Universitat de Barcelona, Diagonal 647, 08028-Barcelona, Spain
M. T. Clavaguera-Mora
Affiliation:
Grup de Física de Materials, Departament de Física, Edifici C, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain
M. Fontana
Affiliation:
Grup de Física de Materials, Departament de Física, Edifici C, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain
Get access

Abstract

The uncertainties inherent to experimental differential scanning calorimetric data are evaluated. A new procedure is developed to perform the kinetic analysis of continuous heating calorimetric data when the heat capacity of the sample changes during the crystallization. The accuracy of isothermal calorimetric data is analyzed in terms of the peak-to-peak noise of the calorimetric signal and base line drift typical of differential scanning calorimetry equipment. Their influence in the evaluation of the kinetic parameter is discussed. An empirical construction of the time-temperature and temperature-heating rate transformation diagrams, grounded on the kinetic parameters, is presented. The method is applied to the kinetic study of the primary crystallization of Te in an amorphous alloy of nominal composition Ga20Te80, obtained by rapid solidification.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Borchardt, H. J. and Daniels, F., J. Am. Chem. Soc. 79, 41 (1957).CrossRefGoogle Scholar
2.Freeman, E. S. and Carroll, B., J. Phys. Chem. 62, 394 (1958).CrossRefGoogle Scholar
3.Coats, A. W. and Redfern, J. P., Nature 201, 64 (1964).CrossRefGoogle Scholar
4.Hugo, P., Wagner, S., and Gnewikiw, T., Thermochim. Acta 225, 143 (1993).CrossRefGoogle Scholar
5.Clavaguera-Mora, M. T., Baró, M. D., Suriñach, S., and Clavaguera, N., J. Mater. Res. 5, 1201 (1990).CrossRefGoogle Scholar
6.Suriñach, S., Baró, M. D., Diego, J. A., Clavaguera, N., and Clavaguera-Mora, M. T., Acta Metall. Mater. 40, 37 (1992).CrossRefGoogle Scholar
7.Clavaguera-Mora, M. T., Suriñach, S., Barò, M. D., and Clavaguera, N., J. Phys. D: Appl. Phys. 25, 803 (1992).CrossRefGoogle Scholar
8.Clavaguera, N., J. Non-Cryst. Solids, 162, 40 (1993).CrossRefGoogle Scholar
9.Clavaguera, N. and Clavaguera-Mora, M. T., Mater. Sci. Eng. A179/180, 288 (1994).CrossRefGoogle Scholar
10.Oh, C. S. and Lee, D. N., Calphad 16, 317 (1992).Google Scholar
11.Mouani, D., Morgant, G., and Legendre, B., J. Alloys Comp. 226, 222 (1995).CrossRefGoogle Scholar
12.Kissinger, H. E., Anal. Chem. 29, 1702 (1957).CrossRefGoogle Scholar
13.Ozawa, T., Bull. Chem. Soc. Jpn. 38, 1881 (1965).CrossRefGoogle Scholar
14.Fontana, G., Sirkin, H., Rosen, M., Kurlat, D., and Frank, E., Rev. Brasileira de Fisica 9, 1 (1979).Google Scholar
15.Fontana, M. G. and Arcondo, B., J. Mater. Sci. 30, 734 (1995).CrossRefGoogle Scholar
16.Fontana, M., Master Thesis, Universitat Autónoma de Barcelona, 1995.Google Scholar
17.Köster, U. and Herold, U., in Glassy Metals I, edited by H. J., Güntherodt and H., Beck, Topics Appl. Phys. (Springer, Berlin, 1981), Vol. 46, p. 225.CrossRefGoogle Scholar
18.Speyer, R. F., Thermal Analysis of Materials, (Marcel Dekker, 1994).Google Scholar
19.Speyer, R. F., J. Mater. Res. 8, 675 (1993).CrossRefGoogle Scholar
20.Christian, J. W., Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon, Oxford, 1975).Google Scholar
21.Henderson, D. W., J. Non-Cryst. Solids 30, 301 (1979).CrossRefGoogle Scholar
22.Chen, H. S., J. Non-Cryst. Solids 27, 257 (1978).CrossRefGoogle Scholar