Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T02:37:41.371Z Has data issue: false hasContentIssue false

X-ray diffraction and x-ray photoelectron spectroscopy study of the Ru–Cu/SiO2 system prepared by low temperature reduction: Occurrence of a metastable amorphous or nanocrystalline phase

Published online by Cambridge University Press:  31 January 2011

Maurizio Lenarda*
Affiliation:
Department of Chemistry, University of Venice “Ca'Foscari”, Calle Larga S. Marta 2137, 30123, Venice, Italy
Renzo Ganzerla
Affiliation:
Department of Chemistry, University of Venice “Ca'Foscari”, Calle Larga S. Marta 2137, 30123, Venice, Italy
Loretta Storaro
Affiliation:
Department of Chemistry, University of Venice “Ca'Foscari”, Calle Larga S. Marta 2137, 30123, Venice, Italy
Romana Frattini
Affiliation:
Department of Physical Chemistry, University of Venice “Ca'Foscari”, Calle Larga S. Marta 2137, 30123, Venice, Italy
Stefano Enzo
Affiliation:
Department of Chemistry, University of Sassari, via Vienna 2, 07100 Sassari, Italy
Roberto Zanoni
Affiliation:
Department of Chemistry, University of Rome “La Sapienza”, Piazzale A. Moro 5, 00185, Rome, Italy
*
a) Address all correspondence to this author.
Get access

Abstract

Bimetallic copper-ruthenium catalysts supported on silica were prepared by the reduction of the metallic salts in aqueous solution at room temperature. The concentration of the two metal components was selected to span the entire range of composition. In spite of the known immiscibility for the copper-ruthenium equilibrium phase diagram, X-Ray Diffraction (XRD) measurements combined with X-ray Photoelectron Spectroscopy (XPS) data indicate that this method of preparation is able to produce nanocrystalline extended solid solutions and/or amorphous metastable phases. In the case of ruthenium-rich compositions, the hexagonal close-packed (hcp) ruthenium crystallites are covered by copper atoms which grow with the same hcp sequence of the ruthenium core. For intermediate compositions a nanocrystalline and/or amorphous phase is observed, while in the case of copper-rich samples a single-phase fcc extended solid solution is found. The surface composition of the samples appears systematically enriched with Cu, as obtained from XPS semiquantitative results. The phenomena of phase separation and growth induced by thermal annealing at 870 K are also presented and discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a)Solid State Powder Processing, edited by A. H. Clauer and J. J. de Barbadillo (The Minerals, Metals and Materials Society, Warrendale, PA, 1990);Google Scholar
(b)Highly Dispersed Metals, W. Romanowski, Horwood, Ltd. (John Wiley, New York, 1987).Google Scholar
2.Davis, S. and Klabunde, K. J., Chem. Rev. 82, 153 (1982).CrossRefGoogle Scholar
3.Transformation of Organometallics into Common and Exotic Materials: Design and Activation, edited by R. M. Laine, NATO ASI Series No. 141 (M. Nijhoff Pub., Dordrecht, 1988).Google Scholar
4. (a)Wade, R. C., J. Mol. Catal. 18, 273 (1983);CrossRefGoogle Scholar
(b)Wade, R. C., in Speciality Inorganic Chemicals, edited by Thompson, R. (The Royal Society, London, 1981), p. 25.Google Scholar
5. (a)Henry, P. J., Met. Finish. 10, 45 (1984);Google Scholar
(b)Ganem, B. and Osby, J. O., Chem. Rev. 86, 763 (1986).CrossRefGoogle Scholar
6. (a)Osby, J. O., Heinzman, S. W., and Ganem, B., J. Am. Chem. Soc. 108, 67 (1986);CrossRefGoogle Scholar
(b)Lin Lo, Y. and Joe Hwang, B., Ind. Eng. Chem. Res. 33, 56 (1994).Google Scholar
7. (a)Corrias, A., Ennas, G., Licheri, G., Marongiu, G., and Paschina, G., Chem. Mater. 2, 363 (1990);CrossRefGoogle Scholar
(b)Carturan, G., Enzo, S., Ganzerla, R., Lenarda, M., and Zanoni, R., J. Chem. Soc. Faraday Trans. 86, 739 (1990);CrossRefGoogle Scholar
(c)Glavve, G. N., Klabunde, K. J., Sorensen, C. M., and Hadjipanayis, G. C., Langmuir 9, 162 (1993);CrossRefGoogle Scholar
(d)Corrias, A., Ennas, G., Musinu, A., Marongiu, G., and Paschina, G., Chem. Mater. 5, 1722 (1993).CrossRefGoogle Scholar
8. (a)Brown, H.C. and Brown, C.A., J. Am. Chem. Soc. 84, 1493 (1962);CrossRefGoogle Scholar
(b)Brown, H.C. and Brown, C. A., J. Am. Chem. Soc. 84, 2827 (1962).CrossRefGoogle Scholar
9.Wade, R. C., in Catalysis of Organic Reactions, edited by Moser, W. R. (Marcel Dekker, New York, 1981), p. 165.Google Scholar
10.Palczewska, W., Cretti-Bujnowska, M., Pielaszek, J., Sobczak, J., and Stachurski, J., in Proc. 9th Int. Congr. Catal. Calgary, 1988, edited by Phillips, K. J. and Ternan, M. (The Chemical Society of Canada, Ottawa, Ontario 1988), pp. 14101417.Google Scholar
11.Wang, C. and Bartholomew, C. H., Appl. Catal. 62, 221 (1990).CrossRefGoogle Scholar
12. (a)Lenarda, M., Ganzerla, R., Storaro, L., and Zanoni, R., J. Mol. Cat. 78, 339 (1993);CrossRefGoogle Scholar
(b)Lenarda, M., Ganzerla, R., Storaro, L., and Zanoni, R., J. Mol. Cat. 79, 243 (1993).CrossRefGoogle Scholar
13.van Wonterghem, J., Morup, S., Koch, C. J. W., Charles, S. W., and Wells, S., Nature (London) 322, 622 (1986).CrossRefGoogle Scholar
14.Oppengard, A. L., Darnell, F. J., and Miller, H. C., J. Appl. Phys. 32, suppl. 3, 184s (1961).CrossRefGoogle Scholar
15.Sinfelt, J. H., J. Catal. 29, 308 (1973).CrossRefGoogle Scholar
16.Sinfelt, J. H., Acc. Chem. Res. 10, 15 (1977).CrossRefGoogle Scholar
17.Sinfelt, J. H., Rev. Mod. Phys. 51, 569 (1979).CrossRefGoogle Scholar
18.Clarke, J. K. A., Chem. Rev. 75, 291 (1975).CrossRefGoogle Scholar
19.Clarke, J. K. A. and Creaner, A. C. M., Ind. Eng. Chem. Prod. Res. Dev. 20, 574 (1981).CrossRefGoogle Scholar
20.Hansen, M. and Anderko, K., Constitution of Binary Alloys, 2nd ed. (McGraw-Hill, New York, 1958).CrossRefGoogle Scholar
21.Bond, G. C. and Turnham, B. D., J. Catal. 45, 128 (1976).CrossRefGoogle Scholar
22.Sinfelt, J. H., Lam, Y. L., Cusumano, J. A., and Barnett, A. E., J. Catal. 42, 227 (1976).CrossRefGoogle Scholar
23.Prestridge, E. B., Via, G. H., and Sinfelt, J.H., J. Catal. 50, 115 (1977).CrossRefGoogle Scholar
24.Sinfelt, J. H., Via, G. H., and Lytle, F. W., J. Chem. Phys. 72, 4832 (1980).CrossRefGoogle Scholar
25.Rouco, A. J., Haller, G. L., Oliver, J.A., and Kemball, C., J. Catal. 84, 297 (1983).CrossRefGoogle Scholar
26.Haller, G. L., Resasco, D. E., and Wang, J., J. Catal. 84, 477 (1983).CrossRefGoogle Scholar
27.Lai, S. Y. and Vicherman, J. C., J. Catal. 90, 337 (1984).CrossRefGoogle Scholar
28.Bond, G. C. and Yide, X., J. Mol. Catal. 25, 141 (1984).CrossRefGoogle Scholar
29.Guo, X., Xin, Q., Li, Y., Jin, D., and Ying, P., in Proceedings 8th International Congress on Catalysis, Berlin, 1984 (Dechema, Frankfurt-am-Main, Germany, 1984), Vol. IV, p. 599.Google Scholar
30.Shastri, A. G., Schwank, J., and Galvagno, S., J. Catal. 100, 446 (1986).CrossRefGoogle Scholar
31.Damiani, D. E., Perez Millan, E. D., and Rouco, A. J., J. Catal. 101, 162 (1986).CrossRefGoogle Scholar
32.Schoenmaker-Stoil, M. C., Verwijs, J.W., and Scholten, J.J.F., Appl. Catal. 30, 339 (1987).CrossRefGoogle Scholar
33.Hong, A. J., Rouco, A. J., Resasco, D. E., and Haller, G. L., J. Phys. Chem. 91, 2665 (1987).CrossRefGoogle Scholar
34.Hong, A. J., McHugh, B. J., Bonneviot, L., Resasco, D. E., Weber, R. S., and Haller, G. L., in Proceedings 9th International Congress on Catalysis, edited by Phillip, M. J. and Ternan, M., Calgary, 1988 (Chemical Institute of Canada, Ottawa 1988), Vol. 3, p. 1198.Google Scholar
35.Sinfelt, J. H., Int. Rev. Phys. Chem. 7, 281 (1988).CrossRefGoogle Scholar
36.Crisafulli, C., Maggiore, R., Schembari, G., Sciré, S., and Galvagno, S., J. Mol. Catal. 50, 67 (1989).CrossRefGoogle Scholar
37.Liu, Rembiao, Tesche, B., and Knoezinger, H., J. Catal. 129, 402 (1991).CrossRefGoogle Scholar
38.Smale, M. W. and King, T. S., J. Catal. 120, 335 (1990).CrossRefGoogle Scholar
39.Sprock, M., Wu, X., and King, T. S., J. Catal. 138, 617 (1992).CrossRefGoogle Scholar
40.Crisafulli, C., Maggiore, R., Sciré, S., Solarino, L., and Galvagno, S., J. Mol. Catal. 63, 55 (1990).CrossRefGoogle Scholar
41.Wu, X., Gerstein, B. C., and King, T. S., J. Catal. 121, 271 (1990).CrossRefGoogle Scholar
42.Wu, X., Bathia, S., and King, T. S., J. Vac. Sci. Technol. A 10 (4), 2729 (1992).CrossRefGoogle Scholar
43.Crisafulli, C., Maggiore, R., Sciré, S., Galvagno, S., and Milone, C., J. Mol. Catal. 83, 237 (1993).CrossRefGoogle Scholar
44. (a)Uenishi, K., Kobayashi, K. F., Nasu, S., Hatano, H., Ishibara, K. N., and Shingu, P. H., Z. Metallk. 83, 2 (1992);Google Scholar
(b)Macrì, P. P., Rose, P., Frattini, R., Enzo, S., Principi, G., Hu, W. X., and Cowlam, N., J. Appl. Phys. 76, 4061 (1994).CrossRefGoogle Scholar
45.Cocco, G., Enzo, S., Schiffini, L., and Battezzati, L., in New Materials by Mechanical Alloying Techniques, edited by Artz, E. and Schultz, L. (Deutsche Gessellschaft fur Metallkunde, Oberursel, Germany, 1989), p. 279.Google Scholar
46.Van Neste, A., Lamarre, A., Trudeau, M. L., and Schulz, R., J. Mater. Res. 7, 2412 (1992).CrossRefGoogle Scholar
47.Practical Surface Analysis, 2nd ed., D. Briggs and M. P. Seah (John Wiley & Sons Ltd. Chichester, U.K., 1990), Vol. 1, appendix 4, p. 587.Google Scholar
48.McIntyre, N. S. and Cook, M. G., Anal. Chem. 47, 2208 (1975).CrossRefGoogle Scholar