Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T15:38:46.284Z Has data issue: false hasContentIssue false

X-ray absorption fine structure study on the formation of Cu–Br bonds in (Br + Cu) ion implanted silica glass

Published online by Cambridge University Press:  06 January 2012

Kohei Fukumi
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center 1–8-31, Midorigaoka, Ikeda, Osaka, 563–8577 Japan
Akiyoshi Chayahara
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center 1–8-31, Midorigaoka, Ikeda, Osaka, 563–8577 Japan
Atsushi Kinomura
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center 1–8-31, Midorigaoka, Ikeda, Osaka, 563–8577 Japan
Hiroyuki Kageyama
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center 1–8-31, Midorigaoka, Ikeda, Osaka, 563–8577 Japan
Kohei Kadono
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center 1–8-31, Midorigaoka, Ikeda, Osaka, 563–8577 Japan
Naoyuki Kitamura
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center 1–8-31, Midorigaoka, Ikeda, Osaka, 563–8577 Japan
Junji Nishii
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center 1–8-31, Midorigaoka, Ikeda, Osaka, 563–8577 Japan
Yuji Horino
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center 1–8-31, Midorigaoka, Ikeda, Osaka, 563–8577 Japan
Get access

Abstract

The valence and coordination structure of implanted Cu and Br ions were investigated by x-ray absorption fine structure spectroscopy in (2.4 MeV 6 × 1016 Br2+ ions cm−2+ 2 MeV 6 × 1016 Cu+ ions cm−2)-implanted silica glass. It was found that the implanted Cu and Br atoms were coordinated by oxygen atoms and silicon atoms, respectively, in as-implanted glass. After heating at 600 °C, at least two-thirds of the Cu atoms were coordinated by Br atoms without the formation of crystals. The γCuBr crystal was formed after heating to 1100 °C. It was deduced that the coordination structure of Cu and Br atoms depends on defects as well as thermochemical stability and mass transport processes.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Weeks, R.A., in Materials Science and Technology, A Comprehensive Treatment, Vol. 9, Glasses and Amorphous Materials, edited by Zarzycki, J. (VCH, Weinheim, Germany, 1991), Chap. 6, pp. 331373.Google Scholar
Arnold, G.W. and Mazzoldi, P., in Beam Modification of Materials 2, Ion Beam Modification of Insulators, edited by Mazzoldi, P. and Arnold, G.W., (Elsevier, Amsterdam, The Netherlands, 1987), Chap. 5, pp. 195222.Google Scholar
Fukumi, K., Chayahara, A., Makihara, M., Fujii, K., Hayakawa, J., and Satou, M., J. Am. Ceram. Soc. 77, 3019 (1994).Google Scholar
Hosono, H., Jpn. J. Appl. Phys. 32, Part 1, 3892 (1993).Google Scholar
Fukumi, K., Chayahara, A., Hayakawa, J., and Satou, M., in Surface Chemistry and Beam-Solid Interactions, edited by Atwater, H.A., Houle, F.A., and Lowndes, D. (Mater. Res. Soc. Symp. Proc., 201, Pittsburgh, PA, 1991), pp. 241246.Google Scholar
Magruder, R.H. III, Weeks, R.A., Zuhr, R.A., and Whichard, G., J. Non-Cryst. Solids 129, 46 (1991).Google Scholar
Fukumi, K., Chayahara, A., Kadono, K., Kageyama, H., Akai, T., Kitamura, N., Makihara, M., Fujii, K., and Hayakawa, J., J. Non-Cryst. Solids 238, 143 (1998).Google Scholar
Fukumi, K., Chayahara, A., Kitamura, N., Akai, T., Hayakawa, J., Fujii, K., and Satou, M., J. Non-Cryst. Solids 178, 155 (1994).CrossRefGoogle Scholar
Fukumi, K., Chayahara, A., Kageyama, H., Kadono, K., Akai, T., Kitamura, N., Mizoguchi, H., Horino, Y., Makihara, M., Fujii, K., and Hayakawa, J., J. Non-Cryst. Solids, 259, 93 (1999).CrossRefGoogle Scholar
Pham, M.T., Möller, D., Hüller, J., and Albrecht, J., J. Appl. Phys. 79, 3915 (1996).Google Scholar
Meldrun, A., White, C.W., Boatner, L.A., Anderson, I.M., Zuhr, R.A., Sonder, E., Budai, J.D., Henderson, D.O., Nucl. Instrum. Methods Phys. Res. B 148, 957 (1999).Google Scholar
Nakao, S., Wang, S.X., Wang, L.M., Ikeyama, M., Miyagawa, Y., Miyagawa, S., Nucl. Instrum. Methods B 175/177, 202 (2001).CrossRefGoogle Scholar
White, C.W., Budai, J.D., Zhu, J.G., Withrow, S.P., Zuhr, R.A., Hembree, D.M., Jr., Henderson, D.O., Ueda, A., Tung, Y.S., Mu, R., and Magruder, R.H., J. Appl. Phys. 79, 1876 (1996).CrossRefGoogle Scholar
Parent, C., Boutinaud, P., LeFlem, G., Moine, B., Pedrini, C., Garcia, D., Faucher, M., Opt. Mater. 4, 107 (1994).CrossRefGoogle Scholar
Gan, F-X., Optical and Spectroscopic Properties of Glass (Springer, Berlin, Germany, 1992), Chap. 7, pp. 148203.Google Scholar
Fukumi, K., Chayahara, A., Ohora, K., Kitamura, N., Horino, Y., Fujii, K., Makihara, M., Hayakawa, J., and Ohno, N., Nucl. Instrum. Methods Phys. Res. B 149, 77 (1999).CrossRefGoogle Scholar
Ziegler, J.F., Biersack, J.P., and Littmark, U., The Stopping and Range of Ions in Solids (Peramon, New York, 1985)Google Scholar
Teo, B.K., EXAFS: Basic Principles and Data Analysis (Springer, Berlin, Germany, 1986), Chap. 6, pp. 114157.CrossRefGoogle Scholar
Hastings, J.B., in EXAFS Spectroscopy Techniques and Applications, edited by Teo, B.K. and Joy, D.C. (Plenum, New York, 1981), Chap. 12, pp. 171180.Google Scholar
Rehr, J.J., Leon, J. Mustre de, Zabinsky, S.I., and Albers, R.C., J. Am. Chem. Soc. 113, 5135 (1991).CrossRefGoogle Scholar
Yokoyama, T., Yonamoto, Y., and Ohta, T., J. Phys. Soc. Jpn. 65, 3901 (1996).CrossRefGoogle Scholar
Brese, N.E. and M. O’Keeffe, Acta Crystallogr. B 47, 192 (1991).CrossRefGoogle Scholar
Appleton, B.R., in Ion Implantation and Beam Processing, edited by Willams, J.S. and Poate, J.M. (Academic, Sydney, Australia, 1984), Chap. 7, pp. 189259.Google Scholar
CRC Handbook of Chemistry and Physics, 77th ed., edited by Lide, D.R. (CRC, Boca Raton, FL, 1996), Chap. 9, pp. 9-159-41, Translated from Kagaku Binran, Kisohen, 3rd ed., edited by the Chemical Society of Japan (Maruzen, Tokyo, 1984), Vol. II, Chap. 15.1, pp. 649–661.Google Scholar
Mozzi, R.L. and Warren, B.E., J. Appl. Crystallogr. 2, 164 (1969).Google Scholar
Bührer, W. and Hälg, W., Electrochim. Acta. 22, 701 (1977).CrossRefGoogle Scholar
Oeckler, O. and Simon, S., Kristallogr, Z.. New Cryst. Struct. 215, 13 (2000).Google Scholar
Mohri, F., Acta. Crystallogr. B 56, 626 (2000).CrossRefGoogle Scholar
Kau, L-S., Spira-Solomon, D.J., Penner-Hahn, J.E., Hodgson, K.O., and Solomon, E.I., J. Am. Chem. Soc. 109, 6433 (1987).CrossRefGoogle Scholar
Grunes, L.A., Phys. Rev. B 27, 2111 (1983).Google Scholar
Bianconi, A., in X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, edited by Koningsberger, D.C. and Prins, R. (Wiley, New York, 1988), Chap. 11, pp. 573662Google Scholar
Minicucci, M. and Di, A. Cicco, Phys. Rev. B 56, 11456 (1997).CrossRefGoogle Scholar
Endo, O., Kiguchi, M., Yokoyama, T., Ito, M., and Ohta, T., J. Electroanal. Chem. 473, 19 (1999).Google Scholar
Yokoyama, T. and Ohota, T., J. Phys. Soc. Jpn. 65, 3909 (1996).Google Scholar
Stern, E.A., Sayers, D.E., and Lytle, F.W., Phys. Rev. B 11, 4836 (1975).Google Scholar
Teo, B.K. and Lee, P.A., J. Am. Chem. Soc. 101, 2815 (1979).CrossRefGoogle Scholar
Filipponi, A., Ottaviano, L., Passacantando, M., Picozzi, P., and Santucci, S., Phys. Rev. E 48, 4575 (1993).Google Scholar
Schumb, W.C. and Klein, C.H., J. Am. Chem. Soc. 59, 261 (1937).Google Scholar
Wyckoff, R.W.G., Crystal Structures, 2nd ed. (Wiley, New York, 1963), Vol. 1, Chap. IV, f1., pp. 331332.Google Scholar
Åsbrink, S. and Norrby, L-J., Acta Crystallogr. B 26, 8 (1970).Google Scholar
Gmelins Handbuch der Anorganischen Chemie, 8th ed., edited by Gmelin-Institut für Anorganische Chemie und Grenzgebiete (Verlag Chemie, Weinheim, Germany, 1959), Silicium, System No. 15, Part B, pp. 543545.Google Scholar
Barin, I., Themochemical Data of Pure Substances, 3rd ed. (VCH, Weinheim, Germany, 1995), Vol.I&II.CrossRefGoogle Scholar
Gmelins Handbuch der Anorganishen Chemie, 8th ed., edited by Gmelin-Institut für Anorganische Chemie und Grenzgebiete (Verlag Chemie, Weinheim, Germany, 1959), Vol. 15B, Silicium, pp. 715724.Google Scholar