Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T10:12:24.142Z Has data issue: false hasContentIssue false

Work-hardening mechanisms of the Ti60Cu14Ni12Sn4Nb10 nanocomposite alloy

Published online by Cambridge University Press:  31 January 2011

Amadeu Concustell*
Affiliation:
Departament de Física, Facultat de Ciències, Edifici Cc, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Jordi Sort
Affiliation:
Institució Catalana de Recerca i Estudis Avançats and Departament de Física, Facultat de Ciències, Edifici Cc, Universitat Autònoma de Barcelona, 08193 Bellaterra,Barcelona, Spain
Jordina Fornell
Affiliation:
Departament de Física, Facultat de Ciències, Edifici Cc, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Emma Rossinyol
Affiliation:
Servei de Microscopia, Facultat de Ciències, Edifici Cs, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Santiago Suriñach
Affiliation:
Departament de Física, Facultat de Ciències, Edifici Cc, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Annett Gebert
Affiliation:
IFW Dresden, Institute for Metallic Materials, D-01171 Dresden, Germany
Jurgen Eckert*
Affiliation:
IFW Dresden, Institute for Complex Materials, D-01171 Dresden, Germany; and TU Dresden, Institute of Materials Science, D-01062 Dresden, Germany
M. Dolors Baró
Affiliation:
Departament de Física, Facultat de Ciències, Edifici Cc, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
*
a) Address all correspondence to this author. e-mail: [email protected]
b) This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy
Get access

Abstract

The work-hardening mechanisms of the Ti60Cu14Ni12Sn4Nb10 nanocomposite alloy were studied. This material is composed of micrometer-sized dendrites embedded in a nanostructured eutectic matrix and a CuTi2 intermetallic phase. Our study shows that, in the as-quenched state, the nanostructured eutectic matrix behaves softer than the dendrites. During mechanical deformation, both the dendrites and the eutectic matrix harden, whereas the hardness of the CuTi2 intermetallic phase remains unaltered. The high strength of the dendrites is caused by the interplay between solid solution hardening and dislocation networks during plastic flow. Interestingly, the mechanical hardening of the nanoeutectic matrix is also assisted by a martensitic transformation of the NiTi phase. Transmission electron microscopy studies clearly show that the martensitic transformation of this phase is accompanied with grain size refinement, which also plays a role in the deformation-induced mechanical hardening.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.He, G., Eckert, J., Loser, W., and Schultz, L.: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).CrossRefGoogle ScholarPubMed
2.Hays, C.C., Kim, C.P., and Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).CrossRefGoogle ScholarPubMed
3.Szuecs, F., Kim, C.P., and Johnson, W.L.: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 (2001).CrossRefGoogle Scholar
4.Choi-Yim, H., Busch, R., Koster, U., and Johnson, W.L.: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4 Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 (1999).CrossRefGoogle Scholar
5.Hofmann, D.C., Suh, J.Y., Wiest, A., Duan, G., Lind, M.L., Demetriou, M.D., and Johnson, W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).CrossRefGoogle ScholarPubMed
6.Mendiratta, M.G., Lewandowski, J.J., and Dimiduk, D.M.: Strength and ductile-phase toughening in the 2-phase Nb/Nb5Si3 composite. Metall. Trans. A 22, 1573 (1991).CrossRefGoogle Scholar
7.Bewlay, B.P., Jackson, M.R., Zhao, J.C., Subramanian, P.R., Mendiratta, M.G., and Lewandowski, J.J.: Ultrahigh-temperature Nb-silicide-based composites. MRS Bull. 28, 646 (2003).CrossRefGoogle Scholar
8.Alur, A.P., Chollacoop, N., and Kumar, K.S.: High-temperaturecompression behavior of Mo-Si-B alloys. Acta Mater. 52, 5571 (2004).CrossRefGoogle Scholar
9.Perepezko, J.H., Sakidja, R., and Kim, S.: Phase stability in processing and microstructure control in high temperature Mo-Si-B alloys, in High-Temperature Ordered Intermetallic Alloys IX, edited by Schneibel, J.H., Hanada, S., Hemker, K.J., Noebe, R.D., and G. Sauthoff (Mater. Res. Soc. Symp. Proc., Warrendale, PA, 2000), p. N4.5.Google Scholar
10.Zhang, Z.F., He, G., Zhang, H., and Eckert, J.: Rotation mechanism of shear fracture induced by high plasticity in Ti-based nanostructured composites containing ductile dendrites. Scr. Mater.52, 945 (2005).Google Scholar
11.Kim, K.B., Das, J., Xu, W., Zhang, Z.F., and Eckert, J.: Microscopic deformation mechanism of a Ti66.1Nb13.9Ni4.8Cu8Sn7.2 nanostructure– dendrite composite. Acta Mater. 54, 3701 (2006).CrossRefGoogle Scholar
12.He, G., Hagiwara, M., Eckert, J., and Löser, W.: Inverse deformationfracture responses between dendrite and matrix in Ti-based nanostructure-dendrite composite. Philos. Mag. Lett. 84, 365 (2004).CrossRefGoogle Scholar
13.Zhang, H., Pan, X.F., Zhang, Z.F., Das, J., Kim, K.B., Müller, C., Baier, F., Kusy, M., Gebert, A., He, G., and Eckert, J.: Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites. Z. Metallkd. 96, 675 (2005).CrossRefGoogle Scholar
14.Concustell, A., Sort, J., S. Suriñach, Gebert, A., Eckert, J., Zhilyaev, A.P., and Baró, M.D.: Severe plastic deformation of a Ti-based nanocomposite alloy studied by nanoindentation. Intermetallics 15, 1038 (2007).CrossRefGoogle Scholar
15. G. Alcalá, Mato, S., Woodcock, T.G., Hangen, U., Eckert, J., Gebert, A., and Schultz, L.: Nanomechanical characterization of Tibase nanostructure-dendrite composite. Z. Metallkd. 95, 317 (2004).Google Scholar
16.Woodcock, T.G., Kusy, M., Mato, S., Alcala, G., Thomas, J., W. Löser, Gebert, A., Eckert, J., and Schultz, L.: Formation of a metastable eutectic during the solidification of the alloy Ti60Cu14Ni12Sn4Ta10. Acta Mater. 53, 5141 (2005).CrossRefGoogle Scholar
17.Lutterotti, L. and Scardi, P.: Simultaneous structure and size-strain refinement by the rietveld method. J. Appl. Crystallogr. 23, 246 (1990).CrossRefGoogle Scholar
18.Young, R.A.: The Rietveld Method (International Union of Crystallography, Oxford University Press, Oxford, 1995).Google Scholar
19.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
20.Lacroix, G., Pardoen, T., and Jacques, P.J.: The fracture toughness of TRIP-assisted multiphase steels. Acta Mater. 56, 3900 (2008).CrossRefGoogle Scholar
21.Cullity, B.D.: Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, Reading, 1978).Google Scholar
22.Otsuka, K. and Ren, X.: Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511 (2005).CrossRefGoogle Scholar
23.Williams, D.B. and Carter, B.: Transmission Electron Microscopy (Plenum Press, New York, 1996).CrossRefGoogle Scholar
24.Waitz, T., Kazykhanov, V., and Karnthaler, H.P.: Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 52, 137 (2004).CrossRefGoogle Scholar
25.Woodcock, T.G., Xie, F.Y., G. Alcalá, Mato, S., Gebert, A., Löser, W., Eckert, J., and Schultz, L.: Phase formation in quinary Ti-based nanocomposites and an analogous ternary system with a view to thermodynamic modelling. J. Metastable Nano. Mater. 2425, 53 (2005).Google Scholar
26.He, G., Eckert, J., W. Löser, and Hagiwara, M.: Composition dependence of the microstructure and the mechanical properties of nano/ultrafine-structured Ti–Cu–Ni–Sn–Nb alloys. Acta Mater. 52, 3035 (2004).CrossRefGoogle Scholar
27.Honeycombe, R.W.K.: The Plastic Deformation of Metals (Edward Arnold Ltd., London, 1975).Google Scholar
28.Arsenault, R.J. and Lawley, A.: Work-hardening characteristics of Ta and Ta-base alloys, in Work Hardening (Institute of Metals Division, Gordon and Breach, Science Publishers, Chicago, IL, 1966), p. 549.Google Scholar
29.Daly, S., Miller, A., Ravichandran, G., and Bhattacharya, : An experimental investigation of crack initiation in thin sheets of nitinol. Acta Mater. 55, 6322 (2007).CrossRefGoogle Scholar
30.Frick, C.P., Travis, W.L., Kevin, S., and Ken, G.: Stress-induced martensitic transformations and shape memory at nanometer scales. Acta Mater. 54, 2223 (2006).CrossRefGoogle Scholar
31.Xu, W., Kim, K.B., Das, J., Calin, M., Rellinghaus, B., and Eckert, J.: Deformation-induced nanostructuring in a Ti-Nb-Ta-In beta alloy. Appl. Phys. Lett. 89, 031906 (2006).CrossRefGoogle Scholar
32.Olson, G.B. and Cohen, M.: Stress-assisted isothermal martensitictransformation—Application to TRIP steels. Metall. Trans. A 3, 1907 (1982).CrossRefGoogle Scholar