Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T19:59:27.308Z Has data issue: false hasContentIssue false

Wet-chemical preparation of digold bismuthide, gold diantimonide, and gold ditelluride particles

Published online by Cambridge University Press:  29 July 2013

Teruyoshi Sakata
Affiliation:
School of Materials Science, The Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, 923-1292, Japan
Derrick M. Mott*
Affiliation:
School of Materials Science, The Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, 923-1292, Japan
Shinya Maenosono
Affiliation:
School of Materials Science, The Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, 923-1292, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The intermetallic materials digold bismuthide, gold diantimonide, and gold ditelluride were chemically synthesized with a bottom-up wet chemical approach, which has not been achieved before. These gold-based materials display a nano- to microparticle grain size and a well-defined composition-based structure. True intermetallic nanoparticle-based materials have traditionally proven challenging to obtain via wet chemical approaches, making the materials created here significant from a fundamental synthesis standpoint. The knowledge gained by developing reliable synthesis approaches toward intermetallic nanoparticles may be used to develop new materials and enhance the understanding of how to refine the characteristics and enhanced properties of emerging nanoparticle semiconductor materials in advanced applications such as for thermoelectrics.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhang, Y., Wang, H., Kraemer, S., Shi, Y., Zhang, F., Snedaker, M., Ding, K., Moskovits, M., Snyer, G.J., and Stucky, G.D.: Surfactant-free synthesis of Bi2Te3-Te micro-nano heterostructure with enhanced thermoelectric figure of merit. ACS Nano 5, 3158 (2011).CrossRefGoogle ScholarPubMed
Scheele, M., Oeschler, N., Meier, K., Kornowski, A., Klinke, C., and Weller, H.: Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles. Adv. Funct. Mater. 19, 3476 (2009).CrossRefGoogle Scholar
Zhao, Y., Dyck, J.S., Hernandez, B.M., and Burda, C.: Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. J. Am. Chem. Soc. 132, 4982 (2010).CrossRefGoogle ScholarPubMed
Chen, J., Sun, T., Sim, D.H., Peng, H., Wang, H., Fan, S., Hng, H.H., Ma, J., Boey, F.Y.C., Li, S., Samani, M.K., Chen, G.C.K., Chen, X., Wu, T., and Yan, Q.: Sb2Te3 nanoparticles with enhanced Seebeck coefficient and low thermal conductivity. Chem. Mater. 22, 3086 (2010).CrossRefGoogle Scholar
Mott, D., Mai, N.T., Thuy, N.T.B., Maeda, Y., Linh, T.P.T., Koyano, M., and Maenosono, S.: Bismuth, antimony and tellurium alloy nanoparticles with controllable shape and composition for efficient thermoelectric devices. Phys. Status Solidi A 208, 52 (2011).CrossRefGoogle Scholar
Mai, N.T., Mott, D., Thuy, N.T.B., Osaka, I., and Maenosono, S.: Study on formation mechanism and ligand-directed architectural control of nanoparticles composed of Bi, Sb and Te: Towards one-pot synthesis of ternary (Bi, Sb)2Te3 nanobuilding blocks. RSC Adv. 1, 1089 (2011).CrossRefGoogle Scholar
Biswas, K., He, J., Blum, I.D., Wu, C., Hogan, T.P., Seidman, D.N., Dravid, V.P., and Kanatzidis, M.G.: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414 (2012).CrossRefGoogle ScholarPubMed
Wang, L., Luo, J., Schadt, M.J., and Zhong, C.J.: Thin film assemblies of molecularly-linked metal nanoparticles and multifunctional properties. Langmuir 26, 618 (2010).CrossRefGoogle ScholarPubMed
Maye, M.M., Luo, J., Lim, I.S., Han, L., Kariuki, N.N., Rabinovich, D., Lu, T., and Zhong, C.J.: Size-controlled assembly of gold nanoparticles induced by a tridentate thioether ligand. J. Am. Chem. Soc. 125, 9906 (2003).CrossRefGoogle ScholarPubMed
Vaughan, J.P.: The process mineralogy of gold: The classification of ore types. JOM 56, 46 (2004).CrossRefGoogle Scholar
Charoenphakdee, A., Kurosaki, K., Harnwunggmoung, A., Muta, H., and Yamanaka, S.: Thermoelectric properties of gold telluride: AuTe2. J. Alloys Compd. 496, 53 (2010).CrossRefGoogle Scholar
Reference data taken from the International Centre for Diffraction Data database 2013, card number 03-065-3093.Google Scholar
Reference data taken from the International Centre for Diffraction Data database 2013, card number 00-008-0460.Google Scholar
Reference data taken from the International Centre for Diffraction Data database 2013, card number 03-065-2307.Google Scholar
Lim, I.S., Mott, D., Engelhard, M.H., Pan, Y., Kamodia, S., Luo, J., Njoki, P.N., Zhou, S., Wang, L., and Zhong, C-J.: Interparticle chiral recognition of enantiomers: A nanoparticle-based recognition strategy. Anal. Chem. 81, 689 (2009).CrossRefGoogle Scholar
NIST X-ray Photoelectron Spectroscopy Database, Version 4.1 (National Institute of Standards and technology, Gaithersburg, 2012), http://srdata.nist.gov/xps/.Google Scholar
Schneider, W.D. and Laubschat, C.: Actinide-noble-metal systems: An X-ray-photoelectron-spectroscopy study of thorium-platinum, uranium-platinum, and uranium-gold intermetallics. Phys. Rev. B 23, 997 (1981).CrossRefGoogle Scholar
Van Attekum, P.M. and Trooster, J.M.: Bulk- and surface-plasmon-loss intensities in photoelectron, auger, and electron-energy-loss spectra of Mg metal. Phys. Rev. B 20, 2335 (1979).CrossRefGoogle Scholar
Debies, T.P. and Rabalais, J.W.: X-ray photoelectron spectra and electronic structure of Bi2X3 (X=O, S, Se, Te). Chem. Phys. 20, 277 (1977).CrossRefGoogle Scholar
Sham, T.K., Perlman, M.L., and Watson, R.E.: Electronic behavior in alloys: Gold-non-transition-metal intermetallics. Phys. Rev. B 19, 539 (1979).CrossRefGoogle Scholar
Benvenutti, E.V., Gushikem, Y., Vasquez, A., de Castro, S.C., and Zaldivar, G.A.P.: X-ray photoelectron spectroscopy and mössbauer spectroscopy study of iron(III) and antimony(V) oxides grafted onto a silica gel surface. J. Chem. Soc., Chem. Commun. 19, 1325 (1991).CrossRefGoogle Scholar
Christie, A.B., Sutherland, I., and Walls, J.M.: Studies of the composition, ion-induced reduction and preferential sputtering of anodic oxide films on Hg0.8Cd0.2Te by XPS. Surf. Sci. 135, 225 (1983).CrossRefGoogle Scholar
Young, C.A. and Luttrell, G.H.: Separation Technologies for Minerals, Coal, and Earth Resources, Society for Mining, Metallurgy, and Exploration, Inc (SME, Englewood, CO, 2012).Google Scholar