Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T17:36:20.093Z Has data issue: false hasContentIssue false

Water adsorption and interface energetics of zinc aluminate spinel nanoparticles: Insights on humidity effects on nanopowder processing and catalysis

Published online by Cambridge University Press:  23 July 2013

Dat V. Quach
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California, Davis, California 95616
Abigail R. Bonifacio
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California, Davis, California 95616
Ricardo H. R. Castro*
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California, Davis, California 95616
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Microcalorimetry was used to study the adsorption of water molecules on the surface of ZnAl2O4 nanoparticles ranging from the anhydrous to the fully hydrated states. Water adsorption of ZnAl2O4 showed similar behavior to the isostructural γ-Al2O3 and revealed possible existence of hydrophobic sites on the surfaces. At the lowest measured coverage (0.49 H2O per nm2), the enthalpy of adsorption is −155.46 kJ/mol. This value decays with increasing coverage and at around 13 H2O per nm2, the heat of adsorption levels at −44 kJ/mol, suggesting further adsorbed water has liquid-like features. The anhydrous surface energy for ZnAl2O4 was calculated to be 1.36 ± 0.08 J/m2 using water adsorption microcalorimetry data. High-temperature oxide melt solution calorimetry was also used to assess the surface energy, which was 1.29 ± 0.33 J/m2. Surface energies at different hydration states are reported and showed decrease with increasing coverage, suggesting that low humidity conditions allow higher driving forces for coarsening.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sampath, S.K. and Cordaro, J.F.: Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels. J. Am. Ceram. Soc. 81(3), 649 (1998).CrossRefGoogle Scholar
Zou, L., Li, F., Xiang, X., Evans, D.G., and Duan, X.: Self-generated template pathway to high-surface-area zinc aluminate spinel with mesopore network from a single-source inorganic precursor. Chem. Mater. 18(25), 5852 (2006).CrossRefGoogle Scholar
Walerczyk, W., Zawadzki, M., and Okal, J.: Characterization of the metallic phase in nanocrystalline ZnAl2O4-supported Pt catalysts. Appl. Surf. Sci. 257(6), 2394 (2011).CrossRefGoogle Scholar
Grabowska, H., Zawadzki, M., and Syper, L.: Gas phase alkylation of 2-hydroxypyridine with methanol over hydrothermally synthesised zinc aluminate. Appl. Catal., A 314(2), 226 (2006).CrossRefGoogle Scholar
Baldinozzi, G., Simeone, D., Crosset, D., Dolle, M., Thome, L., and Mazerolles, L.: Structural stability of ZnAl2O4 spinel irradiated by low energy particles. Nucl. Instrum. Methods Phys. Res., Sect. B 250, 119 (2006).CrossRefGoogle Scholar
Quentin, A., Monnet, I., Gosset, D., Lefrancois, B., and Bouffard, S.: Amorphisation of ZnAl2O4 spinel under heavy ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 267(6), 980 (2009).CrossRefGoogle Scholar
Yamamoto, T., Shimada, M., Yasuda, K., Matsumura, S., Chimi, Y., and Ishikawa, N.: Microstructure and atomic disordering spinel irradiated with swift of magnesium aluminate heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 245(1), 235 (2006).CrossRefGoogle Scholar
Shen, T.D., Feng, S., Tang, M., Valdez, J.A., Wang, Y., and Sickafus, K.E.: Enhanced radiation tolerance in nanocrystalline MgGa2O4. Appl. Phys. Lett. 90(26), (2007).CrossRefGoogle Scholar
Garvie, R.C.: Occurrence of metastable tetragonal zirconia as a crystallite size effect. J. Phys. Chem. 69(4), 1238 (1965).CrossRefGoogle Scholar
McHale, J.M., Auroux, A., Perrotta, A.J., and Navrotsky, A.: Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277(5327), 788 (1997).CrossRefGoogle Scholar
Castro, R.H.R. and Wang, B.B.: The hidden effect of interface energies in the polymorphic stability of nanocrystalline titanium dioxide. J. Am. Ceram. Soc. 94(3), 918 (2011).CrossRefGoogle Scholar
Kellett, B.J. and Lange, F.F.: Thermodynamics of densification: 1. Sintering of simple particle arrays, equilibrium-configurations, pore stability, and shrinkage. J. Am. Ceram. Soc. 72(5), 725 (1989).CrossRefGoogle Scholar
Castro, R.H.R. and Quach, D.V.: Analysis of anhydrous and hydrated surface energies of gamma-Al2O3 by water adsorption microcalorimetry. J. Phys. Chem. C 116(46), 24726 (2012).CrossRefGoogle Scholar
Navrotsky, A.: Progress and new directions in high-temperature calorimetry. Phys. Chem. Miner. 2(1–2), 89 (1977).CrossRefGoogle Scholar
Navrotsky, A.: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24(3), 222 (1997).CrossRefGoogle Scholar
Navrotsky, A. and Kleppa, O.J.: Thermodynamics of cation distributions in simple spinels. J. Inorg. Nucl. Chem. 29(11), 2701 (1967).CrossRefGoogle Scholar
Castro, R.H.R.: Overview of conventional sintering, in Sintering: Mechanisms of Conventional Nanodensification and Field Assisted Processes (Engineering materials), edited by Castro, R.H.R. and van Benthem, K. (Springer-Verlag, Berlin Heidelberg, 2013).CrossRefGoogle Scholar
Castro, R.H.R.: On the thermodynamic stability of nanocrystalline ceramics. Mater. Lett. 96(1), 45 (2013).CrossRefGoogle Scholar
Bolis, V., Fubini, B., Marchese, L., Martra, G., and Costa, D.: Hydrophilic and hydrophobic sites on dehydrated crystalline and amorphous silicas. J. Chem. Soc., Faraday Trans. 87(3), 497 (1991).CrossRefGoogle Scholar
Brunauer, S., Kantro, D.L., and Weise, C.H.: The surface energies of amorphous silica and hydrous amorphous silica. Can. J. Chem. 34(10), 1483 (1956).CrossRefGoogle Scholar
Arrouvel, C., Digne, M., Breysse, M., Toulhoat, H., and Raybaud, P.: Effects of morphology on surface hydroxyl concentration: A DFT comparison of anatase-TiO2 and gamma-alumina catalytic supports. J. Catal. 222(1), 152 (2004).CrossRefGoogle Scholar
Castro, R.H.R., Ushakov, S.V., Gengembre, L., Gouvea, D., and Navrotsky, A.: Surface energy and thermodynamic stability of gamma-alumina: Effect of dopants and water. Chem. Mater. 18(7), 1867 (2006).CrossRefGoogle Scholar
Tran, T.B., Hayun, S., Navrotsky, A., and Castro, R.H.R.: Transparent nanocrystalline pure and Ca-doped MgO by spark plasma sintering of anhydrous nanoparticles. J. Am. Ceram. Soc. 95(4), 1185 (2012).CrossRefGoogle Scholar
Perazolli, L., Varela, J.A., Leite, E.R., and Longo, E.: Effect of atmosphere on the sintering and grain growth of tin oxide, in Advanced Powder Technology, edited by Salgado, L. and Filho, F.A. (Transtec Publications Ltd., Zurich, Switzerland, 1999), pp. 134.Google Scholar
Anderson, P.J. and Morgan, P.L.: Effects of water vapour on sintering of MgO. Trans. Faraday Soc. 60, 930 (1964).CrossRefGoogle Scholar
Costa, G.C.C., Ushakov, S.V., Castro, R.H.R., Navrotsky, A., and Muccillo, R.: Calorimetric measurement of surface and interface enthalpies of yttria-stabilized zirconia (YSZ). Chem. Mater. 22(9), 2937 (2010).CrossRefGoogle Scholar
Navrotsky, A.: Cation-distribution energetics and heats of mixing in MgFe2O4-MgAl2O4, ZnFe2O4-ZnAl2O4, and NiAl2O4-ZnAl2O4 spinels: Study by high-temperature calorimetry. Am. Mineral. 71(9–10), 1160 (1986).Google Scholar
Robie, R.A. and Hemingway, B.S.: Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures (U.S. Geological Survey, Reston, VA, 1995).Google Scholar
Navrotsky, A., Ma, C.C., Lilova, K., and Birkner, N.: Nanophase transition metal oxides show large thermodynamically driven shifts in oxidation-reduction equilibria. Science 330(6001), 199 (2010).CrossRefGoogle ScholarPubMed
Bomati-Miguel, O., Mazeina, L., Navrotsky, A., and Veintemillas-Verdaguer, S.: Calorimetric study of maghemite nanoparticles synthesized by laser-induced pyrolysis. Chem. Mater. 20(2), 591 (2008).CrossRefGoogle Scholar
Birkner, N. and Navrotsky, A.: Thermodynamics of manganese oxides: Effects of particle size and hydration on oxidation-reduction equilibria among hausmannite, bixbyite, and pyrolusite. Am. Mineral. 97(8–9), 1291 (2012).CrossRefGoogle Scholar
Majzlan, J., Grevel, K.D., and Navrotsky, A.: Thermodynamics of Fe oxides: Part II. Enthalpies of formation and relative stability of goethite (alpha-FeOOH), lepidocrocite (gamma-FeOOH), and maghemite (gamma-Fe2O3). Am. Mineral. 88(5–6), 855 (2003).CrossRefGoogle Scholar
Birkner, N., Nayeri, S., Pashaei, B., Najafpour, M.M., Casey, W.H., and Navrotsky, A.: Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation. PNAS 110(22), 88018806 (2013).CrossRefGoogle ScholarPubMed
Ma, Y.Y., Castro, R.H.R., Zhou, W., and Navrotsky, A.: Surface enthalpy and enthalpy of water adsorption of nanocrystalline tin dioxide: Thermodynamic insight on the sensing activity. J. Mater. Res. 26(7), 848853 (2011).CrossRefGoogle Scholar