Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T11:35:58.525Z Has data issue: false hasContentIssue false

Viscoelastic and poroelastic mechanical characterization of hydrated gels

Published online by Cambridge University Press:  31 January 2011

Matteo Galli
Affiliation:
Engineering Department, Cambridge University, Cambridge CB2 1PZ, United Kingdom
Kerstyn S.C. Comley
Affiliation:
Engineering Department, Cambridge University, Cambridge CB2 1PZ, United Kingdom
Tamaryn A.V. Shean
Affiliation:
Engineering Department, Cambridge University, Cambridge CB2 1PZ, United Kingdom
Michelle L. Oyen*
Affiliation:
Engineering Department, Cambridge University, Cambridge CB2 1PZ, United Kingdom
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Measurement of the mechanical behavior of hydrated gels is challenging due to a relatively small elastic modulus and dominant time-dependence compared with traditional engineering materials. Here polyacrylamide gel materials are examined using different techniques (indentation, unconfined compression, dynamic mechanical analysis) at different length-scales and considering both viscoelastic and poroelastic mechanical frameworks. Elastic modulus values were similar for nanoindentation and microindentation, but both indentation techniques overestimated elastic modulus values compared to homogeneous loading techniques. Hydraulic and intrinsic permeability values from microindentation tests, deconvoluted using a poroelastic finite element model, were consistent with literature values for gels of the same composition. Although elastic modulus values were comparable for viscoelastic and poroelastic analyses, time-dependent behavior was length-scale dependent, supporting the use of a poroelastic, instead of a viscoelastic, framework for future studies of gel mechanical behavior under indentation.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Van Landingham, M.R., Chang, N-K., Drzal, P.L., White, C.C., and Chang, S-H.: Viscoelastic characterization of polymers using instrumented indentation, I. Quasi-static testing. J. Polym. Sci., Part B: Polym. Phys. 43, 1794 (2005).CrossRefGoogle Scholar
2.Ebenstein, D. and Pruitt, L.: Nanoindentation of biological materials. Nano Today 1, 26 (2006).CrossRefGoogle Scholar
3.Cheng, L., Xia, X., Scriven, L.E., and Gerberich, W.W.: Spherical-tip indentation of viscoelastic material. Mech. Mater. 37, 213 (2005).Google Scholar
4.Lu, H., Wang, B., Ma, J., Huang, G., and Viswanathan, H.: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7, 189 (2003).Google Scholar
5.Tweedie, C. and Van Vliet, K.: Contact creep compliance of viscoelastic materials via nanoindentation. J. Mater. Res. 21, 1576 (2006).CrossRefGoogle Scholar
6.Oyen, M.L.: Spherical indentation creep following ramp loading. J. Mater. Res. 20, 2094 (2005).Google Scholar
7.Oyen, M.L.: Sensitivity of polymer nanoindentation creep properties to experimental variables. Acta Mater. 55, 3633 (2007).CrossRefGoogle Scholar
8.Oyen, M.L. and Cook, R.F.: Load-displacement behavior during sharp indentation of viscous-elastic-plastic materials. J. Mater. Res. 18, 139 (2003).CrossRefGoogle Scholar
9.Anand, L. and Ames, N.M.: On modeling the micro-indentation response of an amorphous polymer. Int. J. Plast. 22, 1123 (2006).Google Scholar
10.Bembey, A.K., Oyen, M.L., Bushby, A.J., and Boyde, A.: Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philos. Mag. 86, 5691 (2006).CrossRefGoogle Scholar
11.Bembey, A.K., Bushby, A.J., Boyde, A., Ferguson, V.L., and Oyen, M.L.: Hydration effects on bone micro-mechanical properties. J. Mater. Res. 21, 1962 (2006).CrossRefGoogle Scholar
12.Mattice, J.M., Lau, A.G., Oyen, M.L., and Kent, R.W.: Spherical indentation load-relaxation of soft biological tissues. J. Mater. Res. 21, 2003 (2006).Google Scholar
13.Lau, A.G., Oyen, M.L., Kent, R.W., Murakami, D., and Torigaki, T.: Indentation stiffness of aging human costal cartilage. Acta Biomater. 4, 97 (2008).CrossRefGoogle ScholarPubMed
14.Kaufman, J.D., Miller, G.J., Morgan, E.F., and Klapperich, C.M.: Time-dependent mechanical characterization of poly(2-hydro-xyethyl methacrylate) hydrogels using nanoindentation and unconfined compression. J. Mater. Res. 23, 1472 (2008).Google Scholar
15.Huang, G., Wang, B., and Lu, H.: Measurements of viscoelastic functions of polymers in the frequency-domain using nanoindentation. Mech. Time-Depend. Mater. 8, 345 (2004).Google Scholar
16.Odegard, G.M., Gates, T.S., and Herring, H.M.: Characterization of viscoelastic properties of polymeric materials through nanoindentation. Exp. Mech. 45, 130 (2005).Google Scholar
17.Herbert, E.G., Oliver, W.C., and Pharr, G.M.: Nanoindentation and the dynamic characterization of viscoelastic solids. J. Phys. D: Appl. Phys. 41, 074021 (2008).CrossRefGoogle Scholar
18.Cowin, S.C.: Bone poroelasticity. J. Biomech. 32, 217 (1999).Google Scholar
19.Wang, H.W.: Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology (Princeton University Press, Princeton, NJ, 2000).Google Scholar
20.Lakes, R.S.: Viscoelastic Solids (CRC Press, Boca Raton, FL, 1998).Google Scholar
21.Oyen, M.L.: Poroelastic nanoindentation responses of hydrated bone. J. Mater. Res. 23, 1307 (2008).Google Scholar
22.Yamashita, J., Furman, B.R., Rawls, H.R., Wang, X., and Agrawal, C.M.: The use of dynamic mechanical analysis to assess the viscoelastic properties of human cortical bone. J. Biomed. Mater. Res. 58, 47 (2001).3.0.CO;2-U>CrossRefGoogle ScholarPubMed
23.Cugnoni, J., Botsis, J., Sivasubramanian, J., and Janczak-Rusch, J.: Experimental and numerical studies on size and constraining effects in lead-free solder joint. Fatigue Fract. Eng. Mater. Struct. 30, 387 (2007).CrossRefGoogle Scholar
24.Galli, M., Cugnoni, J., Botsis, J., and Janczak-Rusch, J.: Identification of the matrix elastoplastic properties in reinforced active brazing alloys. Composites Part A 972, 39 (2008).Google Scholar
25.Lei, F. and Szeri, J.A.Z.: Inverse analysis of constitutive models: Biological soft tissues. J. Biomech. 40, 936 (2007).CrossRefGoogle ScholarPubMed
26.Field, J.S. and Swain, M.V.: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 (1993).CrossRefGoogle Scholar
27.Oliver, W.C. and Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
28.Galli, M. and Oyen, M.L.: Spherical indentation of a finite poroelastic coating. Appl. Phys. Lett. 93, 031911 (2008).Google Scholar
29.Schramm-Baxter, J., Katrencik, J., and Mitragotri, S.: Jet injection into polyacrylamide gels: Investigation of jet injection mechanics. J. Biomech. 37, 1181 (2004).CrossRefGoogle ScholarPubMed
30.White, M.L.: The permeability of an acrylamide polymer gel. J. Phys. Chem. 64, 1563 (1960).CrossRefGoogle Scholar
31.Agbezuge, L.K. and Deresiewicz, H.: On the indentation of a consolidating half-space. Isr. J. Technol. 12, 322 (1974).Google Scholar
32.Selvadurai, A.P.S.: Stationary damage modeling of poroelastic contact. Int. J. Solids Struct. 41, 2043 (2004).Google Scholar
33.Cuy, J.L., Mann, A.B., Livi, K.J., Teaford, M.F., and Weihs, T.P.: Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch. Oral Biol. 47, 281 (2002).Google Scholar