Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T20:56:50.084Z Has data issue: false hasContentIssue false

Unusual oxidation behavior of light metal hydride by tetrahydrofuran solvent molecules confined in ordered mesoporous carbon

Published online by Cambridge University Press:  20 August 2013

Markus Klose*
Affiliation:
IFW Dresden, Institute for Complex Materials, D-01171 Dresden, Germany; and Institut für Werkstoffwissenschaft, Technische Universität Dresden, D-01069 Dresden, Germany
Inge Lindemann
Affiliation:
IFW Dresden, Institute for Metallic Materials, D-01171 Dresden, Germany; and Institut für Werkstoffwissenschaft, Technische Universität Dresden, D-01069 Dresden, Germany
Christian Bonatto Minella
Affiliation:
IFW Dresden, Institute for Metallic Materials, D-01171 Dresden, Germany; and Institut für Werkstoffwissenschaft, Technische Universität Dresden, D-01069 Dresden, Germany
Katja Pinkert
Affiliation:
IFW Dresden, Institute for Complex Materials, D-01171 Dresden, Germany; and Institut für Werkstoffwissenschaft, Technische Universität Dresden, D-01069 Dresden, Germany
Martin Zier
Affiliation:
IFW Dresden, Institute for Complex Materials, D-01171 Dresden, Germany; and Institut für Werkstoffwissenschaft, Technische Universität Dresden, D-01069 Dresden, Germany
Lars Giebeler
Affiliation:
IFW Dresden, Institute for Complex Materials, D-01171 Dresden, Germany; and Institut für Werkstoffwissenschaft, Technische Universität Dresden, D-01069 Dresden, Germany
Pau Nolis
Affiliation:
Servei de Ressonància Magnètica Nuclear (SeRMN), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Maria Dolors Baró
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
Steffen Oswald
Affiliation:
IFW Dresden, Institute for Complex Materials, D-01171 Dresden, Germany
Oliver Gutfleisch
Affiliation:
Materials Science, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Helmut Ehrenberg
Affiliation:
Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), D-76344 Eggenstein-Leopoldshafen, Germany
Jürgen Eckert
Affiliation:
IFW Dresden, Institute for Complex Materials, D-01171 Dresden, Germany; and Institut für Werkstoffwissenschaft, Technische Universität Dresden, D-01069 Dresden, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Confining light metal hydrides in micro- or mesoporous scaffolds is considered to be a promising way to overcome the existing challenges for these materials, e.g. their application in hydrogen storage. Different techniques exist which allow us to homogeneously fill pores of a host matrix with the respective hydride, thus yielding well defined composite materials. For this report, the ordered mesoporous carbon CMK-3 was taken as a support for LiAlH4 realized by a solution impregnation method to improve the hydrogen desorption behavior of LiAlH4 by nanoconfinement effects. It is shown that upon heating, LiAlH4 is unusually oxidized by coordinated tetrahydrofuran solvent molecules. The important result of the herein described work is the finding of a final composite containing nanoscale aluminum oxide inside the pores of the CMK-3 carbon host instead of a metal or alloy. This newly observed unusual oxidation behavior has major implications when applying these compounds for the targeted synthesis of homogeneous metal–carbon composite materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreasen, A., Vegge, T., and Pedersen, A.S.: Dehydrogenation kinetics of as-received and ball-milled LiAlH4 . J. Solid State Chem. 178, 3672 (2005).Google Scholar
Gao, J., Adelhelm, P., Verkuijlen, M.H.W., Rongeat, C., Herrich, M., Van Bentum, P.J.M., Gutfleisch, O., Kentgens, A.P.M., De Jong, K.P., and De Jongh, P.E.: Confinement of NaAlH4 in nanoporous carbon: Impact on H2 release, reversibility, and thermodynamics. J. Phys. Chem. C 114, 4675 (2010).CrossRefGoogle Scholar
Adelhelm, P. and de Jongh, P.E.: The impact of carbon materials on the hydrogen storage properties of light metal hydrides. J. Mater. Chem. 21, 2417 (2011).Google Scholar
Baldé, C.P., Hereijgers, B.P.C., Bitter, J.H., and de Jong, K.P.: Facilitated hydrogen storage in NaAlH4 supported on carbon nanofibers. Angew. Chem. Int. Ed. 45, 3501 (2006).Google Scholar
Züttel, A., Wenger, P., Sudan, P., Mauron, P., and Orimo, S.: Hydrogen density in nanostructured carbon, metals and complex materials. Mater. Sci. Eng., B 108, 9 (2004).Google Scholar
Bhakta, R.K., Herberg, J.L., Jacobs, B., Highley, A., Behrens, R., Ockwig, N.W., Greathouse, J.A., and Allendorf, M.D.: Metal-organic frameworks as templates for nanoscale NaAlH4 . J. Am. Chem. Soc. 131, 13198 (2009).Google Scholar
Stavila, V., Bhakta, R.K., Alam, T.M., Majzoub, E.H., and Allendorf, M.D.: Reversible hydrogen storage by NaAlH4 confined within a titanium-functionalized MOF-74(Mg) nanoreactor. ACS Nano 74, 9807 (2012).Google Scholar
Orimo, S-I., Nakamori, Y., Eliseo, J.R., Züttel, A., and Jensen, C.M.: Complex hydrides for hydrogen storage. Chem. Rev. 107, 4111 (2007).Google Scholar
Lohstroh, W., Roth, A., Hahn, H., and Fichtner, M.: Thermodynamic effects in nanoscale NaAlH4 . Chem. Phys. Chem. 11, 789 (2010).Google Scholar
Baldé, C.P., Hereijgers, B.P.C., Bitter, J.H., and de Jong, K.P.: Sodium alanate nanoparticles-linking size to hydrogen storage properties. J. Am. Chem. Soc. 130, 6761 (2008).Google Scholar
Li, Y., Zhou, G., Fang, F., Yu, X., Zhang, Q., Ouyang, L., Zhu, M., and Sun, D.: De-/re-hydrogenation features of NaAlH4 confined exclusively in nanopores. Acta Mater. 59, 1829 (2011).Google Scholar
de Jongh, P.E. and Adelhelm, P.: Nanosizing and nanoconfinement: New strategies towards meeting hydrogen storage goals. ChemSusChem 3, 1332 (2010).CrossRefGoogle ScholarPubMed
Gao, J., Ngene, P., Lindemann, I., Gutfleisch, O., de Jong, K.P., and de Jongh, P.E.: Enhanced reversibility of H2 sorption in nanoconfined complex metal hydrides by alkali metal addition. J. Mater. Chem. 22, 13209 (2012).Google Scholar
Adelhelm, P., Gao, J., Verkuijlen, M.H.W., Rongeat, C., Herrich, M., van Bentum, P.J.M., Gutfleisch, O., Kentgens, A.P.M., de Jong, K.P., and de Jongh, P.E.: Comprehensive study of melt infiltration for the synthesis of NaAlH4/C nanocomposites. Chem. Mater. 22, 2233 (2010).Google Scholar
Felderhoff, M., Weidenthaler, C., von Helmolt, R., and Eberle, U.: Hydrogen storage: The remaining scientific and technological challenges. Phys. Chem. Chem. Phys. 9, 2643 (2007).Google Scholar
Lei, X-F. and Ma, J-X.: Synthesis and electrochemical performance of aluminum based composites. J. Braz. Chem. Soc. 21, 209 (2010).Google Scholar
Park, C-M. and Sohn, H-J.: Novel antimony/aluminum/carbon nanocomposite for high-performance rechargeable lithium batteries. Chem. Mater. 20, 3169 (2008).Google Scholar
Chandrasoma, A., Grant, R., Bruce, A.E., and Bruce, M.R.M.: Electrochemical polymerization of aniline on carbon–aluminum electrodes for energy storage. J. Power Sources 219, 285 (2012).Google Scholar
Ashby, E.C., Brendel, G.J., and Redman, H.E.: Direct synthesis of complex metal hydrides. Inorg. Chem. 2, 499 (1963).Google Scholar
Ashby, E.C., Dobbs, F.R., and Hopkins, H.P.: Composition of complex aluminum hydrides and borohydrides, as inferred from conductance, molecular association, and spectroscopic studies. J. Am. Chem. Soc. 95, 2823 (1972).Google Scholar
Wang, J., Ebner, A.D., and Ritter, J.A.: Physiochemical pathway for cyclic dehydrogenation and rehydrogenation of LiAlH4 . J. Am. Chem. Soc. 128, 5949 (2006).Google Scholar
Jun, S., Joo, S.H., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z., Ohsuna, T., and Terasaki, O.: Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 122, 10712 (2000).CrossRefGoogle Scholar
Pinkert, K., Giebeler, L., Herklotz, M., Oswald, S., Thomas, J., Meier, A., Borchardt, L., Kaskel, S., Ehrenberg, H., and Eckert, J.: Functionalised porous nanocomposites: A multidisciplinary approach to investigate designed structures for supercapacitor applications. J. Mater. Chem. A 1, 4904 (2013).Google Scholar
Oswald, S., Nikolowski, K., and Ehrenberg, H.: Quasi in situ XPS investigations on intercalation mechanisms in Li-ion battery materials. Anal. Bioanal. Chem. 393, 1871 (2009).CrossRefGoogle ScholarPubMed
Oswald, S., Nikolowski, K., and Ehrenberg, H.: XPS investigations of valence changes during cycling of LiCrMnO4-based cathodes in Li-ion batteries. Surf. Interface Anal. 42, 916 (2010).Google Scholar
Himakumar, L., Viswanathan, B., and Srinivasamurthy, S.: Dehydriding behaviour of LiAlH4—the catalytic role of carbon nanofibres. Int. J. Hydrogen Energy 33, 366 (2008).Google Scholar
Graetz, J., Wegrzyn, J., and Reilly, J.J.: Regeneration of lithium aluminum hydride. J. Am. Chem. Soc. 130, 17790 (2008).Google Scholar
Dampc, M., Szymańska, E., Mielewska, B., and Zubek, M.: Ionization and ionic fragmentation of tetrahydrofuran molecules by electron collisions. J. Phys. B: At. Mol. Opt. Phys. 44, 055206 (2011).Google Scholar
Mayer, P.M., Guest, M.F., Cooper, L., Shpinkova, L.G., Rennie, E.E., Holland, D.M.P., and Shaw, D.A.: Does tetrahydrofuran ring open upon ionization and dissociation? A TPES and TPEPICO investigation. J. Phys. Chem. A 113, 10923 (2009).Google Scholar
Choi, Y.J., Lu, J., Sohn, Y., Fang, Z.Z., Kim, C., Bowman, R.C., and Hwang, S.: Reaction mechanisms in the Li3AlH6/LiBH4 and Al/LiBH4 systems for reversible hydrogen storage. Part 2: Solid-state NMR studies. J. Phys.Chem. C 115, 6048 (2011).Google Scholar
Verkuijlen, M.H.W., Gelder, D., Van Bentum, P.J.M., and Kentgens, A.P.M.: Oxidation products of NaAlH4 studied by solid-state NMR and X-ray diffraction. J. Phys.Chem. C 115, 7002 (2011).Google Scholar
Herberg, J.L., Maxwell, R.S., and Majzoub, E.H.: 27Al and 1H MAS NMR and 27Al multiple quantum studies of Ti-doped NaAlH4 . J. Alloys Compd. 417, 39 (2006).Google Scholar
Majzoub, E.H., Herberg, J.L., Stumpf, R., Spangler, S., and Maxwell, R.S.: XRD and NMR investigation of Ti-compound formation in solution-doping of sodium aluminum hydrides: Solubility of Ti in NaAlH4 crystals grown in THF. J. Alloys Compd. 394, 265 (2005).Google Scholar
Moulder, K.D., Stickle, J.F., Sobol, W.F., and Bomben, P.E.: Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp., Eden Prairie, MN, 1992).Google Scholar
Amama, P.B., Grant, J.T., Shamberger, P.J., Voevodin, A.A., and Fisher, T.S.: Improved dehydrogenation properties of Ti-doped LiAlH4: Role of Ti precursors. J. Phys. Chem. C 116, 21886 (2012).Google Scholar
Lopez, G.P., Castner, D.G., and Ratner, B.D.: XPS O 1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups. Surf. Interface Anal. 17, 267 (1991).Google Scholar
Kanamura, K., Tamura, H., and Takehara, Z.: XPS analysis of a lithium surface immersed in propylene carbonate solution containing various salts. J. Electroanal. Chem. 333, 127 (1992).Google Scholar
Andersson, A., Henningson, A., Siegbahn, H., Jansson, U., and Edström, K.: Electrochemically lithiated graphite characterised by photoelectron spectroscopy. J. Power Sources 119–121, 522 (2003).Google Scholar
Clayden, J. and Yasin, S.A.: Pathways for decomposition of THF by organolithiums: The role of HMPA. New J. Chem. 26, 191 (2002).CrossRefGoogle Scholar
Wang, K. and Ross, P.N.: XPS and UPS characterization of the reactions of Al(111) with tetrahydrofuran and propylene carbonate. Surf. Sci. 365, 753 (1996).Google Scholar
Lacina, D., Yang, L., Chopra, I., Muckerman, J., Chabal, Y., and Graetz, J.: Investigation of LiAlH4-THF formation by direct hydrogenation of catalyzed Al and LiH. Phys. Chem. Chem. Phys. 14, 6569 (2012).Google Scholar
Bikiel, D.E., Di Salvo, F., González Lebrero, M.C., Doctorovich, F., and Estrin, D.A.: Solvation and structure of LiAlH(4) in ethereal solvents. Inorg. Chem. 44, 5286 (2005).CrossRefGoogle ScholarPubMed
Maity, S.K., Flores, L., Ancheyta, J., and Fukuyama, H.: Carbon-modified alumina and alumina-carbon-supported hydrotreating catalysts. Ind. Eng. Chem. Res. 48, 1190 (2009).CrossRefGoogle Scholar
Khom-in, J., Praserthdam, P., Panpranot, J., and Mekasuwandumrong, O.: Dehydration of methanol to dimethyl ether over nanocrystalline Al2O3 with mixed γ- and χ-crystalline phases. Catal. Commun. 9, 1955 (2008).Google Scholar
Hao, Q., Zhao, Y., Yang, H., Liu, Z., and Liu, Z.: Alumina grafted to SBA-15 in supercritical CO2 as a support of cobalt for Fischer − Tropsch synthesis. Energy Fuels 26, 6567 (2012).Google Scholar
Supplementary material: File

Klose et al. supplementary material

Supplementary material

Download Klose et al. supplementary material(File)
File 68.1 KB