Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T13:02:53.107Z Has data issue: false hasContentIssue false

Universal understanding of direct current transport properties of ReRAM based on a parallel resistance model

Published online by Cambridge University Press:  31 January 2011

K. Kinoshita*
Affiliation:
Fujitsu Laboratories Ltd., Atsugi 243-0197, Japan
H. Noshiro
Affiliation:
Fujitsu Laboratories Ltd., Atsugi 243-0197, Japan
C. Yoshida
Affiliation:
Fujitsu Laboratories Ltd., Atsugi 243-0197, Japan
Y. Sato
Affiliation:
Fujitsu Laboratories Ltd., Atsugi 243-0197, Japan
M. Aoki
Affiliation:
Fujitsu Laboratories Ltd., Atsugi 243-0197, Japan
Y. Sugiyama
Affiliation:
Fujitsu Laboratories Ltd., Atsugi 243-0197, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We propose a parallel resistance model (PRM) in which total resistance (Rtotal) is given by the parallel connection of resistance of a filament (Rfila) and that of a film excluding the filament (Rexcl)—that is, 1/Rtotal = 1/Rfila + 1/Rexcl—to understand direct current (dc) electric properties of resistive random-access memory (ReRAM). To prove the validity of this model, the dependence of the resistance on temperature, R(T), and the relative standard deviation (RSD) of RHRS of Pt/NiO/Pt on the area of a top electrode, S, are investigated. It is clarified that both the R(T) and RSD depended on S, and all such dependencies can be explained by the PRM. The fact that Rtotal is decided by the magnitude relation between Rfila and Rexcl makes transport properties S-dependent and hinders the correct understanding of ReRAM. Smaller S is essential to observe the intrinsic transport properties of ReRAM filaments.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Baek, I.G., Lee, M.S., Seo, S., Lee, M.J., Seo, D.H., Suh, D-S., Park, J.C., Park, S.O., Kim, H.S., Yoo, I.K., Chung, U-I., Moon, J.T.: Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses.Proceedings of the 2004 IEEE International Electron Devices Meeting IEEE Cat. No. 04CH37602 IEEE Piscataway, NJ 2005 587– 590Google Scholar
2Dearnaley, G., Stoneham, A.M., Morgan, D.V.: Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33, 1129 1970Google Scholar
3Biederman, H.: Metal–insulator–metal sandwich structures with anomalous properties. Vacuum 26, 513 1976CrossRefGoogle Scholar
4Hickmott, T.W.: Potential distribution and negative resistance in thin oxide Films. J. Appl. Phys. 35, 2679 1964Google Scholar
5Simmons, J.G., Verderber, R.R.: New conduction and reversible memory phenomena in thin insulating films. Proc. R. Soc. London Ser. A 301, 77 1967Google Scholar
6Dearnaley, G.: A theory of the oxide-coated cathode. Thin Solid Films 3, 161 1968Google Scholar
7Kinoshita, K., Tamura, T., Aso, H., Noshiro, H., Yoshida, C., Aoki, M., Sugiyama, Y., Tanaka, H.: New model proposed for switching mechanism of ReRAM.Proceedings of the 21st IEEE Non-Volatile Semiconductor Memory Workshop Monterey, CA (IEEE NVSMW 2006) IEEE Piscataway, NJ 2006 84–85Google Scholar
8Kinoshita, K., Tamura, T., Aoki, M., Sugiyama, Y., Tanaka, H.: Lowering the switching current of resistance random access memory using a hetero junction structure consisting of transition metal oxides. Jpn. J. Appl. Phys. 45(37), L991 2006CrossRefGoogle Scholar
9Choi, B.J., Jeong, D.S., Kim, S.K., Rohde, C., Choi, S., Oh, J.H., Kim, H.J., Hwang, C.S., Szot, K., Waser, R., Reichenberg, B., Tiedke, S.: Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 033715 2005Google Scholar
10Shin, H., Kim, S., Yun, J-B., Seo, S., Lee, M-J., Kim, D-C., Ahn, S-E., Yoo, I-K.: Observation of resistive switching on NiO thin films by conducting atomic force microscopy in high vacuum. Ext. Abstr., International Symposium on Integrated Ferroelectrics, ISIF, 2007, abstr. 2-284-P,Google Scholar
11Kim, M.G., Kim, S.M., Choi, E.J., Moon, S.E., Park, J., Kim, H.C., Park, B.H., Lee, M.J., Seo, S., Seo, D.H., Ahn, S.E., Yoo, I.K.: Study of transport and dielectric of resistive memory states in NiO thin film. Jpn. J. Appl. Phys. 44(42), L1301 2005Google Scholar
12Kinoshita, K., Yoshida, C., Aso, H., Aoki, M., Sugiyama, Y.: Thermal properties of NiOy resistor practically free from the “forming” process. Ext. Abstr., IEEE Solid State Devices and Materials IEEE Piscataway, NJ 2006 570Google Scholar
13Greene, P.D., Bush, E.L., Rawlings, I.R.: Thin film dielectrics.Proc. Symp. on Deposited Thin Film Dielectric Materials Montreal, Canada,, edited by F. Vratny The Electrochemical Society, New York, 1969 167–185Google Scholar
14Kinoshita, K., Tamura, T., Aoki, M., Sugiyama, Y., Tanaka, H.: Bias polarity dependent data retention of resistive random-access memory consisting of binary transition metal oxide. Appl. Phys. Lett. 89, 103509 2006Google Scholar