Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-01T00:16:20.415Z Has data issue: false hasContentIssue false

Ultra-rapid microwave sintering employing thermal instability and resonant absorption

Published online by Cambridge University Press:  29 July 2019

Kirill I. Rybakov*
Affiliation:
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
Sergei V. Egorov
Affiliation:
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
Anatoly G. Eremeev
Affiliation:
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
Vladislav V. Kholoptsev
Affiliation:
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
Ivan V. Plotnikov
Affiliation:
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
Andrei A. Sorokin
Affiliation:
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Ultra-rapid microwave sintering of ceramics has been recently demonstrated by the authors. In the experiments with oxide ceramic samples carried out in a 24 GHz gyrotron system for microwave processing of materials, full density was achieved in the sintering processes with a duration of the high-temperature stage of one to several minutes and zero hold at the maximum temperature. The implementation of the ultra-rapid microwave sintering processes was made possible due to fast and efficient control over the temperature of the materials and the supplied microwave power. The absorbed microwave power density was typically in the range of 10–100 W/cm3, which is within the same order of magnitude as the power of Joule heat in the DC electric field–assisted flash sintering processes. At this power level, a thermal instability is triggered by the volumetric heating, which results in a drastic enhancement of mass transport. In addition, possibility of ultra-rapid microwave sintering of powder metals has been demonstrated within a model accounting for the effective electromagnetic properties and resonant absorption effects.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper has been selected as an Invited Feature Paper.

References

Tinga, W.R. and Voss, W.A.G.: Microwave Power Engineering (Academic Press, New York, New York, 1968).Google Scholar
Berteaud, A.J. and Badot, J.C.: High temperature microwave heating in refractory materials. J. Microwave Power 11, 315 (1976).CrossRefGoogle Scholar
Osepchuk, J.M.: A history of microwave heating applications. IEEE Trans. Microwave Theory Tech. 32, 1200 (1984).CrossRefGoogle Scholar
Meek, T.T., Holcombe, C.E., and Dykes, N.: Microwave sintering of some oxide materials using sintering aids. J. Mater. Sci. Lett. 6, 1060 (1987).CrossRefGoogle Scholar
Johnson, D.L.: Microwave and plasma sintering of ceramics. Ceram. Int. 17, 295 (1991).CrossRefGoogle Scholar
Sutton, W.H.: Microwave processing of ceramics—An overview. In Microwave Processing of Materials III, Beatty, R.L., Sutton, W.H., and Iskander, M.F., eds.; Materials Research Society Symposium Proceedings, Vol. 269 (Materials Research Society, Pittsburgh, Pennsylvania, 1994); p. 3.Google Scholar
Katz, J.D.: Microwave sintering of ceramics. Annu. Rev. Mater. Sci. 22, 153 (1992).CrossRefGoogle Scholar
Agrawal, D.K.: Microwave processing of ceramics: A review. Curr. Opin. Solid State Mater. Sci. 3, 480 (1998).CrossRefGoogle Scholar
Bykov, Y.V., Rybakov, K.I., and Semenov, V.E.: High-temperature microwave processing of materials. J. Phys. D: Appl. Phys. 34, R55 (2001).CrossRefGoogle Scholar
Binner, J.G.P. and Vaidhyanathan, B.: Microwave sintering of ceramics: What does it offer? Key Eng. Mater. 264–268, 725 (2004).CrossRefGoogle Scholar
Rybakov, K.I., Olevsky, E.A., and Krikun, E.V.: Microwave sintering—Fundamentals and modeling. J. Am. Ceram. Soc. 96, 1003 (2013).CrossRefGoogle Scholar
Eastmen, J.A., Sickafus, K.E., Katz, J.D., Boeke, S.G., Blake, R.D., Evans, C.R., Schwarz, R.B., and Liao, Y.X.: Microwave sintering of nanocrystalline TiO2. In Microwave Processing of Materials II, Snyder, W.B. Jr., Sutter, W.H., Iskander, M.F., and Johnson, D.L., eds.; Materials Research Society Symposium Proceedings, Vol. 189 (Materials Research Society, Pittsburgh, Pennsylvania, 1990); p. 273.Google Scholar
Freim, J., McKittrick, J., Katz, J., and Sickafus, K.: Microwave sintering of nanocrystalline γ-Al2O3. Nanostruct. Mater. 4, 371 (1994).CrossRefGoogle Scholar
Bykov, Y., Eremeev, A., Egorov, S., Ivanov, V., Kotov, Y., Khrustov, V., and Sorokin, A.: Sintering of nanostructural titanium oxide using millimeter-wave radiation. Nanostruct. Mater. 12, 115 (1999).CrossRefGoogle Scholar
Roussy, G. and Mercier, J.: Temperature runaway of microwave heated materials: Study and control. J. Microwave Power 20, 47 (1985).CrossRefGoogle Scholar
Parris, P.E. and Kenkre, V.M.: Thermal runaway in ceramics arising from the temperature dependence of the thermal conductivity. Phys. Status Solidi B 200, 39 (1997).3.0.CO;2-R>CrossRefGoogle Scholar
Kulumbaev, E.B., Semenov, V.E., and Rybakov, K.I.: Stability of microwave heating of ceramic materials in a cylindrical cavity. J. Phys. D: Appl. Phys. 40, 6809 (2007).CrossRefGoogle Scholar
Spotz, M.S., Skamser, D.J., and Johnson, D.L.: Thermal-stability of ceramic materials in microwave-heating. J. Am. Ceram. Soc. 78, 1041 (1995).CrossRefGoogle Scholar
Alliouat, M., Lecluse, Y., Massieu, J., and Mazo, L.: Control algorithm for microwave sintering in a resonant system. J. Microwave Power Electromagn. Energy 25, 25 (1990).CrossRefGoogle Scholar
Beale, G.O., Arteaga, F.J., and Black, W.M.: Design and evaluation of a controller for the process of microwave joining of ceramics. IEEE Trans. Ind. Electron. 39, 301 (1992).CrossRefGoogle Scholar
Semenov, V.E. and Zharova, N.A.: Thermal runaway and hot spots under controlled microwave heating. In Advances in Microwave and Radio Frequency Processing, Willert-Porada, M., ed. (Springer, Berlin, Germany, 2006); p. 482.CrossRefGoogle Scholar
Munir, Z.A., Quach, D.V., and Ohyanagi, M.: Electric current activation of sintering: A review of the pulsed electric current sintering process. J. Am. Ceram. Soc. 94, 1 (2011).CrossRefGoogle Scholar
Raj, R., Cologna, M., and Francis, J.S.C.: Influence of externally imposed and internally generated electrical fields on grain growth, diffusional creep, sintering and related phenomena in ceramics. J. Am. Ceram. Soc. 94, 1941 (2011).CrossRefGoogle Scholar
Guillon, O., Gonzales-Julian, J., Dargatz, B., Kessel, T., Schierning, G., Rathel, J., and Herrmann, M.: Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Adv. Eng. Mater. 16, 830 (2014).CrossRefGoogle Scholar
Olevsky, E.A. and Dudina, D.V.: Field-assisted Sintering: Science and Applications (Springer International Publishing, Berlin/Heidelberg, Germany, 2018).CrossRefGoogle Scholar
Cologna, M., Rashkova, B., and Raj, R.: Flash sintering of nanograin zirconia in <5 s at 850 °C. J. Am. Ceram. Soc. 93, 3556 (2010).CrossRefGoogle Scholar
Dancer, C.E.J.: Flash sintering of ceramic materials. Mater. Res. Express 3, 102001 (2016).CrossRefGoogle Scholar
Yu, M., Grasso, S., Mckinnon, R., Saunders, T., and Reece, M.J.: Review of flash sintering: Materials, mechanisms and modelling. Adv. Appl. Ceram. 116, 24 (2017).CrossRefGoogle Scholar
Todd, R.I., Zapata-Solvas, E., Bonilla, R.S., Sneddon, T., and Wilshaw, P.R.: Electrical characteristics of flash sintering: Thermal runaway of Joule heating. J. Eur. Ceram. Soc. 35, 1865 (2015).CrossRefGoogle Scholar
Rybakov, K.I., Bykov, Y.V., Eremeev, A.G., Egorov, S.V., Kholoptsev, V.V., Sorokin, A.A., and Semenov, V.E.: Microwave ultra-rapid sintering of oxide ceramics. In Processing and Properties of Advanced Ceramics and Composites VII, Mahmoud, M.M., Bhalla, A.S., Bansal, N.P., Singh, J.P., Castro, R., Manjooran, N.J., Pickrell, G., Johnson, S., Brennecka, G., Singh, G., and Zhu, D., eds.; Ceramic Transactions, Vol. 252 (Wiley, Hoboken, New Jersey, 2015); p. 57.CrossRefGoogle Scholar
Bykov, Y.V., Egorov, S.V., Eremeev, A.G., Kholoptsev, V.V., Rybakov, K.I., and Sorokin, A.A.: Flash microwave sintering of transparent Yb:(LaY)2O3 ceramics. J. Am. Ceram. Soc. 98, 3518 (2015).CrossRefGoogle Scholar
Bykov, Y.V., Egorov, S.V., Eremeev, A.G., Kholoptsev, V.V., Plotnikov, I.V., Rybakov, K.I., and Sorokin, A.A.: Sintering of oxide ceramics under rapid microwave heating. In Processing, Properties and Design of Advanced Ceramics and Composites, Singh, G., Bhalla, A., Mahmoud, M.M., Castro, R.H.R., Bansal, N.P., Zhu, D., Singh, J.P., and Wu, Y., eds.; Ceramic Transactions, Vol. 259 (Wiley, Hoboken, New Jersey, 2016); p. 233.CrossRefGoogle Scholar
Bykov, Y.V., Egorov, S.V., Eremeev, A.G., Kholoptsev, V.V., Plotnikov, I.V., Rybakov, K.I., and Sorokin, A.A.: On the mechanism of microwave flash sintering of ceramics. Materials 9, 684 (2016).CrossRefGoogle ScholarPubMed
Bykov, Y.V., Egorov, S.V., Eremeev, A.G., Plotnikov, I.V., Rybakov, K.I., Sorokin, A.A., and Kholoptsev, V.V.: Effect of specific absorbed power on microwave sintering of 3YSZ ceramics. IOP Conf. Ser.: Mater. Sci. Eng. 218, 012001 (2017).CrossRefGoogle Scholar
Bykov, Y.V., Egorov, S.V., Eremeev, A.G., Plotnikov, I.V., Rybakov, K.I., Sorokin, A.A., and Kholoptsev, V.V.: Flash sintering of oxide ceramics under microwave heating. Tech. Phys. 63, 391 (2018).CrossRefGoogle Scholar
Bykov, Y.V., Eremeev, A.G., Egorov, S.V., Kholoptsev, V.V., Plotnikov, I.V., Rybakov, K.I., and Sorokin, A.A.: Ultra-rapid microwave sintering. J. Phys.: Conf. Ser. 1115, 042005 (2018).Google Scholar
Bykov, Y.V., Egorov, S.V., Eremeev, A.G., Kholoptsev, V.V., Plotnikov, I.V., Rybakov, K.I., Sorokin, A.A., Balabanov, S.S., and Belyaev, A.V.: Ultra-rapid microwave sintering of pure and Y2O3-doped MgAl2O4. J. Am. Ceram. Soc. 102, 559 (2019).Google Scholar
Trombin, F. and Raj, R.: Developing processing maps for implementing flash sintering into manufacture of whiteware ceramics. Am. Ceram. Soc. Bull. 93, 32 (2014).Google Scholar
Sortino, E., Lebrun, J-M., Sansone, A., and Raj, R.: Continuous flash sintering. J. Am. Ceram. Soc. 101, 1432 (2018).CrossRefGoogle Scholar
Bykov, Y.V., Egorov, S.V., Eremeev, A.G., Kholoptsev, V.V., Plotnikov, I.V., Rybakov, K.I., and Sorokin, A.A.: Additive manufacturing of ceramic products based on millimeter-wave heating. In Abstract Book of the International Conference on High-Performance Ceramics (CICC-11) (Kunming, China, 2019); p. 27.Google Scholar
Raj, R.: Analysis of the power density at the onset of flash sintering. J. Am. Ceram. Soc. 99, 3226 (2016).CrossRefGoogle Scholar
Kremer, F. and Izatt, J.R.: Millimeter-wave absorption measurements in low-loss dielectric using an untuned cavity resonator. Int. J. Infrared Millimeter Waves 2, 675 (1981).CrossRefGoogle Scholar
Kimrey, H.D. and Janney, M.A.: Design principles for high-frequency microwave cavities. In Microwave Processing of Materials, Sutton, W.H., Brooks, M.H., and Chabinsky, I.J., eds.; Materials Research Society Symposium Proceedings, Vol. 124 (Materials Research Society, Pittsburgh, Pennsylvania, 1988); p. 367.Google Scholar
Bykov, Y.V., Eremeev, A.G., Glyavin, M.Y., Denisov, G.G., Kalynova, G.I., Kopelovich, E.A., Luchinin, A.G., Plotnikov, I.V., Proyavin, M.D., Troitskiy, M.M., and Kholoptsev, V.V.: Millimeter-wave gyrotron research system. I. Description of the facility. Radiophys. Quantum Electron. 61, 752 (2019).CrossRefGoogle Scholar
Jackson, J.D.: Classical Electrodynamics (Wiley, New York, New York, 1962).Google Scholar
Narayan, J.: A new mechanism for field-assisted processing and flash sintering of materials. Scr. Mater. 69, 107 (2013).CrossRefGoogle Scholar
Chaim, R.: Liquid film capillary mechanism for densification of ceramic powders during flash sintering. Materials 9, 280 (2016).CrossRefGoogle ScholarPubMed
Chaim, R.: On the kinetics of liquid-assisted densification during flash sintering of ceramic nanoparticles. Scr. Mater. 158, 88 (2019).CrossRefGoogle Scholar
Egorov, S.V., Bykov, Y.V., Eremeev, A.G., Plotnikov, I.V., Rybakov, K.I., Sorokin, A.A., and Kholoptsev, V.V.: Optical registration of shrinkage during ultra-rapid microwave sintering. In Proceedings of the International Conference on “Synthesis and Consolidation of Powder Materials” (Torus Press, Moscow, Russia, 2018); p. 277. doi: 10.30826/SCPM2018060 [in Russian].Google Scholar
Roy, R., Agrawal, D., Cheng, J., and Gedevanishvili, S.: Full sintering of powdered-metal bodies in a microwave field. Nature 399, 668 (1999).CrossRefGoogle Scholar
Tinga, W.R., Voss, W.A.G., and Blossey, D.F.: Generalized approach to multiphase dielectric mixture theory. J. Appl. Phys. 44, 3897 (1973).CrossRefGoogle Scholar
Bruggeman, D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, I. Dielektriziätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys.–Berlin, Series 5, 24, 636 (1935) [in German].CrossRefGoogle Scholar
Rybakov, K.I., Semenov, V.E., Egorov, S.V., Eremeev, A.G., Plotnikov, I.V., and Bykov, Y.V.: Microwave heating of conductive powder materials. J. Appl. Phys. 99, 023506 (2006).CrossRefGoogle Scholar
Rybakov, K.I. and Semenov, V.E.: Effective microwave dielectric properties of ensembles of spherical metal particles. IEEE Trans. Microwave Theory Tech. 65, 1479 (2017).CrossRefGoogle Scholar
Volkovskaya, I.I., Semenov, V.E., and Rybakov, K.I.: Effective high-frequency permeability of compacted metal powders. Radiophys. Quantum Electron. 60, 797 (2018).CrossRefGoogle Scholar
Sueyoshi, H., Hashiguchi, T., Nakatsuru, N., and Kakiuchi, S.: Effect of surface oxide film and atmosphere on microwave heating of compacted copper powder. Mater. Chem. Phys. 125, 723 (2011).CrossRefGoogle Scholar
Mahmoud, M.M., Link, G., and Thumm, M.: The role of the native oxide shell on the microwave sintering of copper metal powder compacts. J. Alloys Compd. 627, 231 (2015).CrossRefGoogle Scholar
Rybakov, K.I. and Buyanova, M.N.: Microwave resonant sintering of powder metals. Scr. Mater. 149, 108 (2018).CrossRefGoogle Scholar
Manière, C., Lee, G., Zahrah, T., and Olevsky, E.A.: Microwave flash sintering of metal powders: From experimental evidence to multiphysics simulation. Acta Mater. 147, 24 (2018).CrossRefGoogle Scholar
Mie, G.: Beitrage zur optik trüber Medien, speziell kolloidaler Metallosungen. Ann. Phys. 330, 377 (1908) [in German].CrossRefGoogle Scholar
Su, H. and Johnson, D.L.: Master sintering curve: A practical approach to sintering. J. Am. Ceram. Soc. 79, 3211 (1996).CrossRefGoogle Scholar
Rybakov, K.I. and Volkovskaya, I.I.: Electromagnetic field effects in the microwave sintering of electrically conductive powders. Ceram. Int. 45, 9567 (2019).CrossRefGoogle Scholar
Bykov, Y., Eremeev, A., Glyavin, M., Kholoptsev, V., Luchinin, A., Plotnikov, I., Denisov, G., Bogdashev, A., Kalynova, G., Semenov, V., and Zharova, N.: 24–84-GHz gyrotron systems for technological microwave applications. IEEE Trans. Plasma Sci. 32, 67 (2004).CrossRefGoogle Scholar
Esposito, L., Piancastelli, A., Bykov, Y., Egorov, S., and Eremeev, A.: Microwave sintering of Yb:YAG transparent laser ceramics. Opt. Mater. 35, 761 (2013).CrossRefGoogle Scholar
Balabanov, S.S., Gavrishchuk, E.M., Kut’in, A.M., and Permin, D.A.: Self-propagating high-temperature synthesis of Y2O3 powders from Y(NO3)3x(CH3COO)3(1−x)·nH2O. Inorg. Mater. 47, 484 (2011).CrossRefGoogle Scholar
Robertson, I.M. and Schaffer, G.B.: Some effects of particle size on the sintering of titanium and a master sintering curve model. Metall. Mater. Trans. A 40, 1968 (2009).CrossRefGoogle Scholar