Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T08:09:16.912Z Has data issue: false hasContentIssue false

Tunable glass reference materials for quantitative backscattered electron imaging of mineralized tissues

Published online by Cambridge University Press:  21 August 2012

Sara E. Campbell
Affiliation:
Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309; and Materials Reliability Division, NIST, Boulder, Colorado80305
Roy H. Geiss
Affiliation:
Materials Reliability Division, NIST, Boulder, Colorado80305
Steve A. Feller
Affiliation:
Physics Department, Coe College, Cedar Rapids, Iowa52402
Virginia L. Ferguson*
Affiliation:
Department of Mechanical Engineering, University of Colorado, Boulder, Colorado80309
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Backscattered electron microscopy provides gray-level contrast resulting from variations in atomic composition. Through the use of reference materials, quantitative backscattered electron (qBSE) imaging can be used to measure the mineral content of mineralized tissues at submicron resolution. We have developed novel tunable reference materials that can be adjusted for analysis of an individual tissue or a wide range of tissues with variable atomic density. As an alternative to conventional metallic reference materials, these amorphous materials maintain long-term stability and possess no long-range order that may induce channeling contrast. Using these reference materials, we characterized the mineral content of a broad range of mineralized tissues from immature mouse femur to whale bulla. Mineral volume fraction correlated to more traditional measurements of mineral content with microcomputed tomography and ashing techniques. Further, we demonstrate the advantage of location-matched measurements of nanomechanical properties and qBSE mineral content.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ferguson, V.L., Bushby, A.J., and Boyde, A.: Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J. Anat. 203(2), 191 (2003).CrossRefGoogle ScholarPubMed
Bloebaum, R.D., Skedros, J.G., Vajda, E.G., Bachus, K.N., and Constantz, B.R.: Determining mineral content variations in bone using backscattered electron imaging. Bone 20(5), 485 (1997).CrossRefGoogle ScholarPubMed
Boyde, A., Elliott, J., and Jones, S.: Stereology and histogram analysis of backscattered electron images - age-changes in bone. Bone 14(3), 205 (1993).CrossRefGoogle ScholarPubMed
Roschger, P., Fratzl, P., Eschberger, J., and Klaushofer, K.: Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23(4), 319 (1998).CrossRefGoogle ScholarPubMed
Skedros, J.G., Bloebaum, R.D., Bachus, K.N., Boyce, T., and Constantz, B.: Influence of mineral-content and composition on graylevels in backscattered electron images of bone. J. Biomed. Mater. Res. 27(1), 57 (1993).CrossRefGoogle ScholarPubMed
Angker, L., Nockolds, C., Swain, M.V., and Kilpatrick, N.: Correlating the mechanical properties to the mineral content of carious dentine - a comparative study using an ultra-micro indentation system (UMIS) and SEM-BSE signals. Arch. Oral Biol. 49(5), 369 (2004).CrossRefGoogle Scholar
Sinclair, K.D., Curtis, B.D., Koller, K.E., and Bloebaum, R.D.: Characterization of the anchoring morphology and mineral content of the anterior cruciate and medial collateral ligaments of the knee. Anat. Rec. 294(5), 831 (2011).CrossRefGoogle ScholarPubMed
Kingsmill, V.J., Boyde, A., Davis, G.R., Howell, P.G.T., and Rawlinson, S.C.F.: Changes in bone mineral and matrix in response to a soft diet. J. Dent. Res. 89(5), 510 (2010).CrossRefGoogle ScholarPubMed
Tjhia, C.K., Odvina, C.V., Rao, D.S., Stover, S.M., Wang, X., and Fyhrie, D.P.: Mechanical property and tissue mineral density differences among severely suppressed bone turnover (SSBT) patients, osteoporotic patients, and normal subjects. Bone 49(6), 1279 (2011).CrossRefGoogle ScholarPubMed
Zebaze, R.M.D., Jones, A.C., Pandy, M.G., Knackstedt, M.A., and Seeman, E.: Differences in the degree of bone tissue mineralization account for little of the differences in tissue elastic properties. Bone 48(6), 1246 (2011).CrossRefGoogle ScholarPubMed
Smith, L.J., Schirer, J.P., and Fazzalari, N.L.: The role of mineral content in determining the micromechanical properties of discrete trabecular bone remodeling packets. J. Biomech. 43(16), 3144 (2010).CrossRefGoogle ScholarPubMed
Fratzl-Zelman, N., Morello, R., Lee, B., Rauch, F., Glorieux, F.H., Misof, B.M., Klaushofer, K., and Roschger, P.: CRTAP deficiency leads to abnormally high bone matrix mineralization in a murine model and in children with osteogenesis imperfecta type VII. Bone 46(3), 820 (2010).CrossRefGoogle Scholar
Boyce, T.M., Bloebaum, R.D., Bachus, K.N., and Skedros, J.G.: Reproducible method for calibrating the backscattered electron signal for quantitative assessment of mineral-content in bone. Scanning Microsc. 4(3), 591 (1990).Google ScholarPubMed
Traini, T., Degidi, M., Iezzi, G., Artese, L., and Piattelli, A.: Comparative evaluation of the peri-implant bone tissue mineral density around unloaded titanium dental implants. J. Dent. 35(1), 84 (2007).CrossRefGoogle ScholarPubMed
Reid, S.A. and Boyde, A.: Changes in the mineral density distribution in human bone with age: Image analysis using backscattered electrons in the SEM. J. Bone Miner. Res. 2(1), 13 (1987).CrossRefGoogle ScholarPubMed
Lloyd, G.: Atomic-number and crystallographic contrast images with the SEM - a review of backscattered electron techniques. Mineral. Mag. 51(359), 3 (1987).CrossRefGoogle Scholar
Howell, P.G.T., Davy, K.M.W., and Boyde, A.: Mean atomic number and backscattered electron coefficient calculations for some materials with low mean atomic number. Scanning 20(1), 35 (1998).CrossRefGoogle ScholarPubMed
Boyde, A. and Jones, S.J.: Back-scattered electron imaging of skeletal tissues. Metab. Bone. Dis. Relat. 5(3), 145 (1983).CrossRefGoogle ScholarPubMed
Howell, P.G.T. and Boyde, A.: Monte Carlo simulations of electron scattering in bone Bone 15(3), 285 (1994).CrossRefGoogle ScholarPubMed
Goldstein, J., Newbury, D., Joy, D., Layman, C., Echlin, P., Lifshin, E., Sawyer, L., and Michael, J.: Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. (Springer, New York, 2003).CrossRefGoogle Scholar
Oyen, M.L., Ferguson, V.L., Bembey, A.K., Bushby, A.J., and Boyde, A.: Composite bounds on the elastic modulus of bone. J. Biomech. 41(11), 2585 (2008).CrossRefGoogle ScholarPubMed
Vajda, E.G., Skedros, J.G., and Bloebaum, R.D.: Consistency in calibrated backscattered electron images of calcified tissues and minerals analyzed in multiple imaging sessions. Scanning Microsc. 9(3), 741 (1995).Google ScholarPubMed
Islam, M.M., Holland, D., and Scales, C.R.: Chemical durability and conductivity of mixed borosilicate glasses for high level waste immobilisation. Phys. Chem. Glasses 49(5), 229 (2008).Google Scholar
Ewing, R.C.: Nuclear waste form glasses: The evaluation of very long-term behaviour. Mater. Technol. 16(1), 30 (2001).CrossRefGoogle Scholar
Mullenbach, T., Franke, M., Ramm, A., Betzen, A.R., Kapoor, S., Lower, N., Munhollon, T., Berman, M., Affatigato, M., and Feller, S.A.: Structural characterisation of alkaline earth borosilicate glasses through density modelling. Phys. Chem. Glasses 50(2), 89 (2009).Google Scholar
Feller, S., Lodden, G., Riley, A., Edwards, T., Croskrey, J., Schue, A., Liss, D., Stentz, D., Blair, S., Kelley, M., Smith, G., Singleton, S., Affatigato, M., Holland, D., Smith, M.E., Kamitoss, E.I., Varsamis, C.P.E., and Ioannou, E.: A multispectroscopic structural study of lead silicate glasses over an extended range of compositions. J. Non-Cryst. Solids 356(6–8), 304 (2010).CrossRefGoogle Scholar
Joy, D.C.: A database on electron-solid interactions. Scanning 17(5), 270 (1995).CrossRefGoogle Scholar
Arnal, F., Verdier, P., and Vincensini, P.: Backscattering coefficient in the case of monoenergetic electrons arriving at the target at an oblique incidence. Compt. Rend.,Ser. B 268, 1526 (1969).Google Scholar
Heinrich, K.: Theory of quantitative electron probe microanalysis, in Electron Beam X-ray microanalysis, Heinrich, K., ed. (Van Nostrand Reinhold, New York, 1981); pp. 219254.Google Scholar
Herrmann, R. and Reimer, L.: Backscattering coefficient of multicomponent specimens. Scanning 6(2), 20 (1984).CrossRefGoogle Scholar
Reuter, W.: The ionization function and its application to the electron probe analysis of thin films, in Proceedings of Sixth International Conference On X-Ray Optics and Microanalysis, edited by Shinoda, G., Kohra, K., and Ichinokawa, T. (University of Tokyo Press, Tokyo, Japan, 1972); pp. 121130.Google Scholar
Castaing, R.: Electron probe microanalysis. Adv. Electron. Electron Phys. 13, 317 (1960).CrossRefGoogle Scholar
Weast, R.: Handbook of Chemistry and Physics, 57th ed. (CRC Press Inc., Cleveland, OH, 1976).Google Scholar
Wong, F.S.L. and Elliott, J.C.: Theoretical explanation of the relationship between backscattered electron and x-ray linear attenuation coefficients in calcified tissues. Scanning 19(8), 541 (1997).CrossRefGoogle ScholarPubMed
Elliott, J.C.: Calcium phosphate biominerals, in Phosphates: Geochemical, Geobiological, and Materials Importance, edited by Kohn, M.J., Rakovan, J., and Hughes, J.M. (Mineralogical Society America, Wahington DC, 2002); pp. 427.CrossRefGoogle Scholar
Parfitt, A.M., Drezner, M.K., Glorieux, F.H., Kanis, J.A., Malluche, H., Meunier, P.J., Ott, S.M., and Recker, R.R.: Bone histomorphometry - standardization of nomenclature, symbols, and units. J. Bone Miner. Res. 2(6), 595 (1987).CrossRefGoogle ScholarPubMed
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).CrossRefGoogle Scholar
Bushby, A.J.: Nano-indentation using spherical indenters. Nondestr. Test. Eval. 17(4), 213 (2001).CrossRefGoogle Scholar
Tesch, W., Eidelman, N., Roschger, P., Goldenberg, F., Klaushofer, K., and Fratzl, P.: Graded microstructure and mechanical properties of human crown dentin. Calcified Tissue Int. 69(3), 147 (2001).CrossRefGoogle ScholarPubMed
Rho, J.Y., Roy, M.E., Tsui, T.Y., and Pharr, G.M.: Elastic properties of microstructural components of human bone tissue as measured by nanoindentation. J. Biomed. Mater. Res. 45(1), 48 (1999).3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Gupta, H.S., Stachewicz, U., Wagermaier, W., Roschger, P., Wagner, H.D., and Fratzl, P.: Mechanical modulation at the lamellar level in osteonal bone. J. Mater. Res. 21(8), 1913 (2006).CrossRefGoogle Scholar
Currey, J.D.: Three analogies to explain the mechanical properties of bone. Biorheology 2, 1 (1964).CrossRefGoogle Scholar
Katz, J.L.: Hard tissue as a composite material .1. bounds on elastic behavior. J. Biomech. 4(5), 455 (1971).CrossRefGoogle Scholar
Hashin, Z. and Shtrickman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127 (1963).CrossRefGoogle Scholar
Herakovich, C.T.: Mechanics of Fibrous Composites (Wiley, New York, NY, 1997).Google Scholar