Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T08:40:58.088Z Has data issue: false hasContentIssue false

Transmission electron microscopy observation of nanoscale deformation structures in nacre

Published online by Cambridge University Press:  31 January 2011

Taro Sumitomo*
Affiliation:
National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
Hideki Kakisawa
Affiliation:
National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
Yusuke Owaki
Affiliation:
Research Center for Advanced Science and Technology, University of Tokyo, Meguro, Tokyo 153-8904, Japan
Yutaka Kagawa
Affiliation:
Research Center for Advanced Science and Technology, University of Tokyo, Meguro, Tokyo 153-8904, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The mechanical performance of nacre in seashells is generally described in terms of mesoscale mechanisms between mineral plates within the organic polymer matrix. However, recent work has reported nanostructures and organic material within individual plates and associated deformation mechanisms. In this work, we further investigated the nanoscale structure and mechanical behavior within individual plates of nacre by using two methods to induce fracture of plates: microindentation with focused ion beam preparation and ultramicrotomy. Using transmission electron microscopy, we observed deformation nanostructures and organic matrix within plates and identified nanoscale mechanisms, such as separation, shear, and matrix crack bridging.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gao, H.: Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int. J. Fract. 138, 101 2006CrossRefGoogle Scholar
2Mayer, G.: Rigid biological systems as models for synthetic composites. Science 310, 1144 2005CrossRefGoogle ScholarPubMed
3Sarikaya, M.: An introduction to biomimetics: A structural viewpoint. Microsc. Res. Tech. 27, 360 1994CrossRefGoogle ScholarPubMed
4Jackson, A.P., Vincent, J.F.V., Turner, R.M.: The mechanical design of nacre. Proc. R. Soc. London, Ser. B 234, 415 1988Google Scholar
5Currey, J.D.: Mechanical properties of mother of pearl in compression. Proc. R. Soc. London, Ser. B 196, 443 1977Google Scholar
6Menig, R., Meyers, M.H., Meyers, M.A., Vecchio, K.S.: Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta Mater. 48, 2383 2000CrossRefGoogle Scholar
7Smith, B.L., Schäffer, T.E., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A.M., Stucky, G.D., Morse, D.E., Hansma, P.K.: Molecular mechanistic origin of natural adhesives, fibres and composites. Nature 399(24), 761 1999CrossRefGoogle Scholar
8Song, F., Soh, A.K., Bai, Y.L.: Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 24, 3623 2003CrossRefGoogle ScholarPubMed
9Wang, R.Z., Suo, Z., Evans, A.G., Yao, N., Aksay, I.A.: Deformation mechanisms in nacre. J. Mater. Res. 16(9), 2485 2001CrossRefGoogle Scholar
10Wang, R.Z., Wen, H.B., Cui, F.Z., Zhang, H.B., Li, H.D.: Observations of damage morphologies in nacre during deformation and fracture. J. Mater. Sci. 30, 2299 1995CrossRefGoogle Scholar
11Barthelat, F., Tang, H., Zavattieri, P.D., Li, C-M., Espinosa, H.D.: On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. J. Mech. Phys. Solids 55(2), 306 2007CrossRefGoogle Scholar
12Katti, K.S., Katti, D.R., Pradhan, S.M., Bhosle, A.: Platelet interlocks are the key to toughness and strength in nacre. J. Mater. Res. 20(5), 1097 2005CrossRefGoogle Scholar
13Watabe, N.: Decalcification of thin sections for electron microscope studies of crystal-matrix relationships in mollusc shells. J. Cell Biol. 18, 70 1963CrossRefGoogle ScholarPubMed
14Watabe, N.: Crystal-matrix relationships in the inner layers of mollusk shells. J. Ultrastruct. Res. 12, 351 1965CrossRefGoogle ScholarPubMed
15Mutvei, H.: Ultrastructure of the mineral and organic components of molluscan nacreous layers. Biomineralization 2, 48 1970Google Scholar
16Oaki, Y., Kotachi, A., Miura, T., Imai, H.: Bridged nanocrystals in biominerals and their biomimetics: Classical yet modern crystal growth on the nanoscale. Adv. Funct. Mater. 16, 1633 2006CrossRefGoogle Scholar
17Oaki, Y., Imai, H.: The hierarchical architecture of nacre and its mimetic material. Angew. Chem. Int. Ed. 44, 6571 2005CrossRefGoogle ScholarPubMed
18Bruet, B.J.F., Qi, H.J., Boyce, M.C., Panas, R., Tai, K., Frick, L., Ortiz, C.: Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J. Mater. Res. 20(9), 2400 2005CrossRefGoogle Scholar
19Mohanty, B., Katti, K.S., Katti, D.R., Verma, D.: Dynamical nanomechanical response of nacre. J. Mater. Res. 21(8), 2045 2006CrossRefGoogle Scholar
20Rousseau, M., Lopez, E., Stempflé, P., Bendlé, M., Franke, L., Guette, A., Naslain, R., Bourrat, X.: Multiscale structure of sheet nacre. Biomaterials 26, 6254 2005CrossRefGoogle ScholarPubMed
21Li, X., Chang, W-C., Chao, Y.J., Wang, R., Chang, M.: Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone. Nano Lett. 4(4), 613 2004CrossRefGoogle Scholar
22Stempflé, P., Brendlé, M.: Tribological behaviour of nacre: Influence of the environment of the elementary wear process. Tribol. Int. 39, 1485 2006CrossRefGoogle Scholar
23Takahashi, K., Yamamoto, H., Onoda, A., Doi, M., Inaba, T., Chiba, M., Kobayashi, A., Taguchi, T., Okamura, T-a., Ueyama, N.: Highly oriented aragonite nanocrystal-biopolymer composites in an aragonite brick of the nacreous layer of Pinctada fucata. Chem. Commun. (Camb.) 8, 996 2004CrossRefGoogle Scholar
24Weiss, I.M., Tuross, N., Addadi, L., Weiner, S.: Mollusc larval shell formation: Amorphous calcium carbonate is a precursor phase for aragonite. J. Exp. Zool. 293(5), 478 2002CrossRefGoogle ScholarPubMed
25Addadi, L., Joester, D., Nudelman, F., Weiner, S.: Mollusk shell formation: A source of new concepts for understanding biomineralization processes. Chem. Eur. J. 12, 980 2006CrossRefGoogle ScholarPubMed
26Weiner, S., Traub, W.: Macromolecules in mollusc shells and their functions in biomineralization. Philos. Trans. R. Soc. London, Ser. B 304, 425 1984Google Scholar
27Lin, A., Meyers, M.A.: Growth and structure in abalone shell. Mater. Sci. Eng., A 390, 27 2005CrossRefGoogle Scholar
28Nakahara, H.: An electron microscope study of the growing surface of nacre in two gastropod species, Turbo cornutus and Tegula pfeifferi. Venus Jpn. J. Malacology 38(3), 205 1979Google Scholar
29Rousseau, M., Lopez, E., Couté, A., Mascarel, G., Smith, D.C., Naslain, R., Bourrat, X.: Sheet nacre growth mechanism: A Voronoi model. J. Struct. Biol. 149, 149 2005CrossRefGoogle ScholarPubMed
30Nassif, N., Pinna, N., Gehrke, N., Antonietti, M., Jäger, C., Cölfen, H.: Amorphous layer around aragonite platelets in nacre. Proc. Nat. Acad. Sci. U.S.A 102(36), 12653 2005CrossRefGoogle ScholarPubMed
31Choi, C-S., Kim, Y-W.: A study of correlation between organic matrices and nanocomposite materials in oyster shell formation. Biomaterials 21, 213 2000CrossRefGoogle ScholarPubMed
32Schäffer, T.E., Ionescu-Zanetti, C., Proksch, R., Fritz, M., Walters, D.A., Almqvist, N., Zaremba, C.M., Belcher, A.M., Smith, B.L., Stucky, G.D., Morse, D.E., Hansma, P.K.: Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem. Mater. 9, 1731 1997CrossRefGoogle Scholar
33Li, X., Xu, Z-H., Wang, R.: In situ observation of nanograin rotation and deformation in nacre. Nano Lett. 6(10), 2301 2006CrossRefGoogle ScholarPubMed
34Ji, B., Gao, H.: Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solids 52, 1963 2004CrossRefGoogle Scholar
35Gunnison, K.E., Sarikaya, M., Liu, J., Aksay, I.A.: Structure-mechanical property relationships in a biological ceramic-polymer composite: Nacre in Hierarchically Structured Materials, edited by I.A. Aksay, E. Baer, M. Sarikaya, and D.A. Tirrel (Mater. Res. Soc. Symp. Proc. 255, Pittsburgh, PA, 1992), p. 171CrossRefGoogle Scholar
36Simon, P., Carrillo-Cabrera, W., Formánek, P., Göbel, C., Geiger, D., Ramlau, R., Tlatlik, H., Buder, J., Kniep, R.: On the real-structure of biomimetically grown hexagonal prismatic seeds of fluorapatite-gelatine-composites: TEM investigations along. J. Mater. Chem. 14, 2218 2004CrossRefGoogle Scholar
37Sumitomo, T., Kakisawa, H., Owaki, Y., Kagawa, Y.: Structure of natural nano-laminar composites: TEM observation of nacre. Mater. Sci. Forum 561–565, 713 2007CrossRefGoogle Scholar
38Sumitomo, T., Kakisawa, H., Owaki, Y., Kagawa, Y.: In situ TEM observation of reversible deformation in nacre organic matrix. J. Mater. Res. 23(5), 1466 2008CrossRefGoogle Scholar
39Towe, K.M., Hamilton, G.H.: Ultramicrotome-induced deformation artifacts in densely calcified material. J. Ultrastruct. Res. 22, 274 1968CrossRefGoogle ScholarPubMed