Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T23:53:01.476Z Has data issue: false hasContentIssue false

A Transmission Electron Microscope Study of Hardness Indentations in MoSi2

Published online by Cambridge University Press:  31 January 2011

P. H. Boldt
Affiliation:
Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4M1, Canada
G. C. Weatherly*
Affiliation:
Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4M1, Canada
J. D. Embury
Affiliation:
Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4M1, Canada
*
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Transmission electron microscopy and electron diffraction were used to study hardness indentations made at room temperature in ⟨001⟩-oriented single crystals of MoSi2. Two families of slip systems, {110}⟨001⟩ and {101}⟨010⟩, were identified. The first system formed ⟨001⟩ dislocation loops by prismatic punching beneath the indenter, while the second system led to large rotations of the crystal lattice beneath the indenter. The lattice rotations were used to estimate the density of dislocations stored in this volume. The results demonstrate that the hardness response of MoSi2 can be explained by the expanding cavity model with most of the plastic accommodation occurring immediately beneath the indenter.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fleischer, R.L., J. Mater. Sci. 22, 2281 (1987).CrossRefGoogle Scholar
2.Fleischer, R.L., Dimiduk, D.M., and Lipsitt, H.A., Annu. Rev. Mater. Sci. 19, 231 (1989).CrossRefGoogle Scholar
3.Vasudevan, A.K. and Petrovic, J.J., Mater. Sci. Eng. A 155, 1 (1992).CrossRefGoogle Scholar
4.Ito, K., Inui, H., Shirai, Y., and Yamaguchi, M., Philos. Mag. A 72, 1075 (1995).CrossRefGoogle Scholar
5.Umakoshi, Y., Sakagami, T., Hirano, T., and Yamane, T., Acta Metall. Mater. 38, 909 (1990).CrossRefGoogle Scholar
6.Maloy, S.A., Mitchell, T.E., Lewandowski, J.J., and Heuer, A.H., Philos. Mag. Lett. 67, 313 (1993).CrossRefGoogle Scholar
7.Evans, D.J., Court, S.A., Hazzledine, P.M., and Fraser, H.L., Philos. Mag. Lett. 67, 331 (1993).CrossRefGoogle Scholar
8.Umakoshi, Y., Hirano, T., Sakagame, T., and Yamane, T., Scripta Met. 23, 87 (1989).CrossRefGoogle Scholar
9.Maloy, S.A., Mitchell, T.E., and Heuer, A.H., Acta Metall. Mater. 43, 657 (1995).CrossRefGoogle Scholar
10.Boldt, P.H., Embury, J.D., and Weatherly, G.C., J. Mat. Sci. Eng. A 15, 251 (1992).CrossRefGoogle Scholar
11.Marsh, D.M., Proc. R. Soc. London, Ser. A 279, 420 (1964).Google Scholar
12.Johnson, K.L., J. Mech. Phys. Solids 18, 115 (1970).CrossRefGoogle Scholar
13.Seitz, F., Phys. Rev. 79, 723 (1950).CrossRefGoogle Scholar
14.Smakula, A. and Klein, M.W., J. Opt. Soc. Am. 39, 445 (1949).CrossRefGoogle Scholar
15.Mura, T., Yamashita, N., Mishima, T., and Hirose, Y., Int. J. Eng. Sci. 27, 1 (1989).CrossRefGoogle Scholar
16.Tanaka, K., Kanari, M., and Matsui, N., Acta. Mater. 47, 2243 (1999).CrossRefGoogle Scholar
17.Hill, R., Lee, E.H., and Tupper, S.J., Proc. R. Soc. A188, 273 (1947).Google Scholar
18.Gane, N. and Cox, M., Philos. Mag. A 48, 881 (1971).Google Scholar
19.Ma, Q. and Clarke, D.R., J. Mater. Res. 10, 853 (1995).CrossRefGoogle Scholar
20.Brown, L.M., Khan, M.Y., and Chaudhri, M.M., Philos. Mag. A 57, 187 (1988).CrossRefGoogle Scholar
21.Boldt, P.H., Ph.D. Thesis, McMaster University, Hamilton, Ontario, Canada (1998).Google Scholar
22.Boldt, P.H., Embury, J.D., and Weatherly, G.C. (unpublished).Google Scholar
23.Boldt, P.H., Weatherly, G.C., and Embury, J.D., Philos. Mag. Lett. 75, 9 (1997).CrossRefGoogle Scholar
24.Humble, P., in Modern Imaging Techniques in Materials Science, edited by Amelinckx, S., Gevers, R., Renalt, G., and Van Landuyt, J. (North-Holland, Amsterdam, 1970).Google Scholar
25.Nabarro, F.R.N, Phys. Rev. 79, 894 (1950).CrossRefGoogle Scholar
26.Nye, J.F., Acta Metall. 1, 153 (1953).CrossRefGoogle Scholar
27.Milman, Y.V., Galanov, B.A., and Chugunova, S.I., Acta Metall. Mater. 41, 2523 (1993).CrossRefGoogle Scholar
28.Nakamura, M., Matsumoto, S., and Hirano, T., J. Mater. Sci. 25, 3309 (1990).CrossRefGoogle Scholar
29.Tabor, D., The Hardness of Metals (Clarendon Press, Oxford, United Kingdom, 1951), p. 130.Google Scholar
30.Johnson, K.J., Contact Mechanics (Cambridge University Press, United Kingdom, 1985), p. 510.CrossRefGoogle Scholar
31.Giannakopoulos, A.E. and Suresh, S., Scripta Mater. 40, 1191 (1999).CrossRefGoogle Scholar
32.Brookes, C.A., O'Neill, J.B., and Redfern, B.A.W, Proc. R. Soc. London, Ser. A 322, 73 (1971).Google Scholar