Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-15T13:26:00.221Z Has data issue: false hasContentIssue false

Three-dimensional nanostructures by focused ion beam techniques: Fabrication and characterization

Published online by Cambridge University Press:  19 November 2013

Wuxia Li*
Affiliation:
Laboratory of Microfabrication, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Changzhi Gu*
Affiliation:
Laboratory of Microfabrication, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Ajuan Cui
Affiliation:
Laboratory of Microfabrication, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
J.C. Fenton
Affiliation:
Department of Electrical Engineering, London Center for Nanotechnology, University College London, London WC1E 7JE, United Kingdom
Qianqing Jiang
Affiliation:
Laboratory of Microfabrication, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
P.A. Warburton
Affiliation:
Department of Electrical Engineering, London Center for Nanotechnology, University College London, London WC1E 7JE, United Kingdom
Tiehan H. Shen
Affiliation:
Joule Physics Laboratory, University of Salford, Manchester M5 4WT, United Kingdom
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Three-dimensional (3D) nanostructures and nanodevices have attracted tremendous interest in the past few years due to their special mechanical and physical properties. Nanodevices using 3D nanostructures as the building blocks have been demonstrated to exhibit multifunctionality and functions that conventional planar devices cannot achieve. In this article, we report and review focused ion beam techniques for direct site-specific growth of 3D nanostructures and postgrowth shape modification of freestanding nanostructures by ion beam-induced chemical vapor deposition and ion-beam-irradiation-induced plastic bending, respectively. Such techniques have shown nanometer-scale resolution and accuracy in the fabrication of metallic nanoelectrodes, 3D pickup coils, nanogaps, and multibranched structures. Characterization of the resulting nanostructures shows that focused ion beam techniques allow conducting and superconducting freestanding 3D structures to be tailored in size, geometry, and integrated with planar electronic, mechanical, and superconducting nanodevices, potentially enabling lab-on-a-chip experiments.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D.A., Bartal, G., and Zhang, X.: Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376 (2008).CrossRefGoogle ScholarPubMed
Gouma, P., Kalyanasundaram, K., Yun, X., Stanacevic, M., and Wang, L.: Nanosensor and breath analyzer for ammonia detection in exhaled human breath. IEEE Sens. J. 10, 49 (2010).CrossRefGoogle Scholar
Tian, B., Cohen-Karni, T., Qing, Q., Duan, X., Xie, P., and Lieber, C.M.: Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830 (2010).CrossRefGoogle ScholarPubMed
Noda, S., Tomoda, K., Yamamoto, N., and Chutinan, A.: Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289, 604 (2000).CrossRefGoogle ScholarPubMed
Romans, E.J., Osley, E.J., Young, L., Warburton, P.A., and Li, W.: Three-dimensional nanoscale superconducting quantum interference device pickup loops. Appl. Phys. Lett. 97, 222506 (2010).CrossRefGoogle Scholar
Morita, T., Kometani, R., Watanabe, K., Kanda, K., Haruyama, Y., Hoshino, T., Kondo, K., Kaito, T., Ichihashi, T., Fujita, J., Ishida, M., Ochiai, Y., Tajima, T., and Matsui, S.: Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition. J. Vac. Sci. Technol., B 21(6), 2737 (2003).CrossRefGoogle Scholar
Tétreault, N., von Freymann, G., Deubel, M., Hermatschweiler, M., Pérez-Willard, F., John, S., Wegener, M., and Ozin, G. A.: New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates. Adv. Mater. 18, 457 (2006).CrossRefGoogle Scholar
Hermatschweiler, M., Ledermann, A., Ozin, G. A., Wegener, M., and von Freymann, G.: Fabrication of silicon inverse woodpile photonic crystals. Adv. Funct. Mater. 17, 2273 (2007).CrossRefGoogle Scholar
Newton, M.C., Firth, S., and Warburton, P.A.: ZnO tetrapod Schottky photodiodes. Appl. Phys. Lett. 89, 072194 (2006).CrossRefGoogle Scholar
Li, W. and Shen, T.H.: Composition and annealing temperature dependent properties of Co1−xPtx(0<x≤0.2) alloy nanowire arrays. J. Appl. Phys. 97, 10J706 (2005).CrossRefGoogle Scholar
Yang, Q., Sha, J., Ma, X., and Yang, D.: Synthesis of NiO nanowires by a sol-gel process. Mater. Lett. 59, 1967 (2005).CrossRefGoogle Scholar
Benson, J., Boukhalfa, S., Magasinski, A., Kvit, A., and Yushin, G.: Chemical vapor deposition of aluminum nanowires on metal substrates for electrical energy storage applications. ACS Nano 6, 118 (2012).CrossRefGoogle ScholarPubMed
Ichihashi, T. and Matsui, S.: In situ observation on electron beam induced chemical vapor deposition by transmission electron microscopy. J. Vac. Sci. Technol., B 6, 1869 (1988).CrossRefGoogle Scholar
Stanishevsky, A., Edinger, K., Orloff, J., Melngailis, J., Stewart, D., Williams, A., and Clark, R.: Testing new chemistries for mask repair with focused ion beam gas assisted etching. J. Vac. Sci. Technol., B 21, 3067 (2003).CrossRefGoogle Scholar
DeMarco, A.J. and Melngailis, J.: Contact resistance of focused ion beam deposited platinum and tungsten films to silicon. J. Vac. Sci. Technol., B 19, 2543 (2001).CrossRefGoogle Scholar
Ross, I.M., Luxmoor, I.J., Cullis, A.G., Orr, J., Buckle, P.D., and Jefferson, J.H.: Characterisation of tungsten nano-wires prepared by electron and ion beam induced chemical vapour deposition. J. Phys. Conf. Ser. 26, 363 (2006).CrossRefGoogle Scholar
Matsui, S., Kaito, T., Fujita, J., Komuro, M., Kanda, T., and Haruyama, Y.: Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition. J. Vac. Sci. Technol., B 18, 3181 (2002).CrossRefGoogle Scholar
Li, W. and Warburton, P.A.: Low-current focused-ion-beam induced deposition of three-dimensional tungsten nanoscale conductors. Nanotechnology 18, 485305 (2007).CrossRefGoogle Scholar
Utke, I., Moshkalev, S., and Russell, P.: Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications (Oxford University Press, New York, NY, 2012).Google Scholar
Utke, I., Hoffmann, P., and Melngailis, J.: Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol., B 26, 1197 (2008).CrossRefGoogle Scholar
Blauner, P.G., Ro, J.S., Butt, Y., and Melngailis, J.: Focused ion beam fabrication of submicron gold structures. J. Vac. Sci. Technol., B 7, 609 (1989).CrossRefGoogle Scholar
Chen, P., Veldhoven, E., Sanford, C.A., Salemink, H.W.M., Maas, D.J., Smith, D.A., Rack, P.D., and Alkemade, P.F.A.: Nanowire growth by focused helium ion-beam-induced deposition. Nanotechnology 21, 455302 (2010).CrossRefGoogle Scholar
Li, W., Fenton, J.C., Cui, A., Wang, H., Wang, Y., Gu, C.Z., McComb, D.W., and Warburton, P.A.: Felling of individual freestanding nanoobjects using focused-ion-beam milling for investigations of structural and transport properties. Nanotechnology 23, 105301 (2012).CrossRefGoogle ScholarPubMed
Li, W., Fenton, J.C., Wang, Y., McComb, D.W., and Warburton, P.A.: Tunability of the superconductivity of tungsten films grown by focused-ion-beam direct writing. J. Appl. Phys. 104, 093913 (2008).CrossRefGoogle Scholar
Arora, W.J., Sijbrandij, S., Stern, L., Notte, J., Smith, H.I., and Barbastathis, G.: Membrane folding by helium ion implantation for three-dimensional device fabrication. J. Vac. Sci. Technol., B 25, 2184 (2007).CrossRefGoogle Scholar
Xia, L., Wu, W., Xu, J., Hao, Y., and Wang, Y.: 3D nanohelix fabrication and 3D nanometer assemble by focused ion beamstress-introducing technique. In Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, Turkey, Vol. 22, (IEEE, Piscataway, NJ, 2006); p. 11.Google Scholar
Jun, K., Joo, J., and Jacobson, J.M.: Focused ion beam-assisted bending of silicon nanowires for complex three dimensional structures. J. Vac. Sci. Technol., B 27, 3043 (2009).CrossRefGoogle Scholar
Cui, A., Fenton, J.C., Li, W., Shen, T.H., Liu, Z., and Gu, C.Z.: Ion-beam induced bending of freestanding amorphous nanowires: The importance of substrate material and charging. Appl. Phys. Lett. 102, 213112 (2013).CrossRefGoogle Scholar
Chen, P., Alkemade, P.F.A., and Salemink, H.W.M.: The complex mechanisms of ion-beam-induced deposition. Jpn. J. Appl. Phys. 47, 5123 (2008).CrossRefGoogle Scholar
Bret, T., Utke, I., Hoffmann, P., Abourida, M., and Doppelt, P.: Electron range effects in focused electron beam induced deposition of 3D nanostructures. Microelectron. Eng. 83, 1482 (2006).CrossRefGoogle Scholar
Koshnick, N.C., Huber, M.E., Bert, J.A., Hicks, C.W., Large, J., Edwards, H., and Moler, K.A.: A terraced scanning superconducting quantum interference device susceptometer with submicron pickup loops. Appl. Phys. Lett. 93, 243101 (2008).CrossRefGoogle Scholar
Hegner, M., Dreier, M., Wagner, P., Semenza, G., and Güntherodt, H.J.: Modified DNA immobilized on bioreactive self-assembled monolayer on gold for dynamic force microscopy imaging in aqueous buffer solution. J. Vac. Sci. Technol., B 14, 1418 (1996).CrossRefGoogle Scholar
Gaur, G., Koktysh, D.S., and Weiss, S.M.: Immobilization of quantum dots in nanostructured porous silicon films: Characterizations and signal amplification for dual-mode optical biosensing. Adv. Funct. Mater. 23, 3712 (2013).CrossRefGoogle Scholar
Neuman, K.C. and Block, S.M.: Optical trapping. Rev. Sci. Instrum. 75, 2787 (2004).CrossRefGoogle ScholarPubMed
Bopp, M.A., Sytnik, A., Howard, T.D., Cogdell, R.J., and Hochstrasser, R.M.: The dynamics of structural deformations of immobilized single light-harvesting complexes. Proc. Natl. Acad. Sci. U.S.A. 96, 11271 (1999).CrossRefGoogle ScholarPubMed