Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T04:37:00.573Z Has data issue: false hasContentIssue false

Thin-film synthesis and microstructure characterization of the poly(vinyl alcohol) matrix with functionalized carbon nanotubes

Published online by Cambridge University Press:  31 January 2011

Xiaoling He*
Affiliation:
University of Wisconsin, Milwaukee, Wisconsin 53201
Song Xu
Affiliation:
Agilent Technologies AFM, Tempe, Arizona 85282
Andrey V. Sklyarov
Affiliation:
University of Wisconsin, Milwaukee, Wisconsin 53201
Steven Hardcastle
Affiliation:
University of Wisconsin, Milwaukee, Wisconsin 53201
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report on the synthesis and surface characterization of thin-film nanocomposites using functionalized single-walled carbon nanotubes (CNTs) with a diamine-terminated oligomeric poly(ethylene glycol) [poly(ethylene glycol) bis (3-aminopropyl)-terminated 1500]. The functionalized CNT samples are soluble in highly polar solvents. Their common solubility allows for the intimate mixing of the functionalized nanotubes with the matrix polymer–poly(vinyl alcohol) by dip coating and wet casting to form nanocomposite thin films. We demonstrate the alignment of the CNT bundles in the thin films that are formed without the external field forces. We present our results and discuss alignment reorientations from the characterizations of the nanocomposite thin films by using a Raman spectrometer, scanning electron microscopy, and atomic force microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lau, K.T. Hui, D.: The revolutionary creation of new advanced materials: Carbon nanotube composites. Composites Part B: Eng. 33, 263 2002CrossRefGoogle Scholar
2Khare, R. Bose, S.: Carbon nanotube-based composites: A review. J. Min. Charact. Eng. 4(1), 31 2005Google Scholar
3Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F. Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637 2000CrossRefGoogle ScholarPubMed
4Sennett, M., Welsh, E., Wright, J.B., Li, W.Z., Wen, J.G. Ren, Z.F.: Dispersion and alignment of carbon nanotubes in polycarbonate. Appl. Phys. B 76, 111 2003CrossRefGoogle Scholar
5Sun, Y-P., Fu, K., Lin, Y. Huang, W.: Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res. 35, 1096 2002CrossRefGoogle ScholarPubMed
6Niyogi, S., Hamon, M.A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., Itkis, M.E. Haddon, R.C.: Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1105 2002CrossRefGoogle ScholarPubMed
7Bahr, J.L. Tour, J.M.: Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 12, 1952 2002CrossRefGoogle Scholar
8Wagner, H.D.: Nanotube-polymer adhesion: A mechanics approach. Chem. Phys. Lett. 361, 57 2002CrossRefGoogle Scholar
9Wagner, H.D., Lourie, O., Feldman, Y. Tenne, R.: Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 72, 188 1998CrossRefGoogle Scholar
10Schadler, L.S., Giannaris, S.C. Ajayan, P.M.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73, 3842 1998CrossRefGoogle Scholar
11Qian, D., Dickey, E.C., Andrews, R. Rantell, T.: Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76, 2868 2000CrossRefGoogle Scholar
12Olek, M., Kempa, K., Jurga, S. Giersig, M.: Nanomechanical properties of silica-coated multiwall carbon nanotubes-poly(methyl methacrylate) composites. Langmuir 21, 3146 2005CrossRefGoogle ScholarPubMed
13Bower, C., Rosen, R., Jin, L., Han, J. Zhou, O.: Deformation of carbon nanotubes in nanotube–polymer composites. Appl. Phys. Lett. 74, 3317 1999CrossRefGoogle Scholar
14Gong, X., Liu, J., Baskaran, S., Voise, R.D. Young, J.S.: Surfactant-assisted processing of carbon nanotube/polymer composites. Chem. Mater. 12, 1049 2000CrossRefGoogle Scholar
15Lau, K.T.: Interfacial bonding characteristics of nanotube/polymer composites. Chem. Phys. Lett. 370, 399 2003CrossRefGoogle Scholar
16Manchado, M.A.L., Valentini, L., Biagiotti, J. Kenny, J.M.: Thermal and mechanical properties of single-walled carbon nano tubes: Polypropylene composites prepared by melt processing. Carbon 43, 1499 2005CrossRefGoogle Scholar
17Biercuk, M.J., Llaguno, M.C., Radosavljevic, M., Hyun, J.K., Johnson, A.T. Fischer, J.E.: Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80, 2767 2002CrossRefGoogle Scholar
18Hone, J., Llaguno, M.C., Biercuk, M.J., Jognson, A.T., Batlogg, B., Benes, Z. Fischer, J.E.: Thermal properties of carbon nanotubes and carbon nanotube-based materials. Appl. Phys. A 74, 339 2002CrossRefGoogle Scholar
19Michelson, E.T., Huffman, C.B., Rinzler, A.G., Smalley, R.E., Hauge, R.H. Margrave, J.L.: Fluorination of carbon nanotubes. Chem. Phys. Lett. 296, 188 1998CrossRefGoogle Scholar
20Dyke, C.A. Tour, J.M.: Covalent functionalization of single-walled carbon nanotubes for materials applications. J. Phys. Chem. A 108, 11151 2004CrossRefGoogle Scholar
21Bahr, J.L. Tour, J.M.: Highly functionalized carbon nanotubes using in-situ generalization of diazonium compounds. Chem. Mater. 13, 3823 2001CrossRefGoogle Scholar
22Chen, Y., Rao, A.M., Lyuksyutov, S., Itkis, M.E., Hamon, M.A., Hu, H., Cohn, R.W., Eklund, P.C., Colbert, D.T., Smalley, R.E. Haddon, R.: Dissolution of full length single-wall carbon nanotubes. J. Phys. Chem. B 105, 2525 2001CrossRefGoogle Scholar
23Grady, B.P., Pompeo, F., Shambaugh, R.L. Resasco, D.E.: Nucleation of polypropylene crystallization by single-walled carbon nanotubes. J. Phys. Chem. B 106, 5852 2002CrossRefGoogle Scholar
24Huang, W., Fernando, S., Lin, Y., Zhou, B., Allard, L.F. Sun, Y-P.: Preferential solubilization of smaller single-walled carbon nanotubes in sequential functionalization reactions. Langmuir 19, 7084 2003CrossRefGoogle Scholar
25Lin, Y., Zhou, B., Fernando, K.A. Shiral, Liu, P., Allard, L.F. Sun, Y.-P.: Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer. Macromolecules 36, 7199 2003CrossRefGoogle Scholar
26Qu, L.W., Lin, Y., Hill, D.E., Zhou, B., Wang, W., Sun, X.F., Kitaygorodskiy, A., Suarez, M., Connell, J.W., Allard, L.F. Sun, Y.P.: Polyimide-functionalized carbon nanotubes: Synthesis and dispersion in nanocomposite films. Macromolecules 37, 6055 2004CrossRefGoogle Scholar
27Haggenmueller, R., Gommans, H.H., Rinzler, A.G., Fischer, J.E. Winey, K.I.: Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330, 219 2000CrossRefGoogle Scholar
28Xie, X.L., Mai, Y.W. Zhou, X.P.: Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng. Rep. 49, 89 2005CrossRefGoogle Scholar
29Wong, W.K., Lee, C.S. Lee, S.T.: Uniform-diameter, aligned carbon nanotubes from microwave plasma-enhanced chemical-vapor deposition. J. Appl. Phys. 97(8), 084307 2005CrossRefGoogle Scholar
30Kimura, T., Ago, H., Tobita, M., Ohshima, S., Kyotani, M. Yumura, M.: Polymer composites of carbon nanotubes aligned by a magnetic field. Adv. Mater. 14, 1380 20023.0.CO;2-V>CrossRefGoogle Scholar
31Thostenson, E.T. Chou, T.W.: Aligned multiwall carbon nanotube nanotube-reinforced composites: Processing and mechanical characterization. J. Phys. D: Appl. Phys. 35, L77 2002CrossRefGoogle Scholar
32Thomsen, S.R. Christian Maultzsch, J.: Resonant Raman spectroscopy of nanotubes. Philos. Trans. R. Soc. London, Ser. A 362, 2337 2004CrossRefGoogle ScholarPubMed
33Cooper, C.A., Cohen, S.R., Barber, A.H. Wagner, H.D.: Detachment of nanotubes from a polymer matrix. Appl. Phys. Lett. 81, 3873 2002CrossRefGoogle Scholar
34Smith, B., Benes, Z., Luzzi, D.E. Fischer, J.E.: Structural anisotropy of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 77, 663 2000CrossRefGoogle Scholar
35Casavant, M.J., Walters, D.A., Schmidt, J.J. Smalley, R.E.: Neat macroscopic membrances of aligned carbon nanotubes. J. Appl. Phys. 93, 2153 2003CrossRefGoogle Scholar
36Chattopadhyay, D., Galeska, I. Papadimitrakopoulos, F.: A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. J. Am. Chem. Soc. 125, 3370 2003CrossRefGoogle ScholarPubMed