Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T16:58:04.262Z Has data issue: false hasContentIssue false

Thermoelectric properties of superlattice materials with variably spaced layers

Published online by Cambridge University Press:  29 July 2011

T.D. Musho*
Affiliation:
Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37212
D.G. Walker*
Affiliation:
Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Variably spaced semiconductor superlattices (VSSLs) exhibited superior electron mobility and rectification because of electronic level alignment. We investigated the thermoelectric properties of VSSL structures using a self-consistent nonequilibrium Green’s function quantum model to capture the ballistic electron transport and anatomistic nonequilibrium Green’s function model to capture the phonon transport. A figure of merit was calculated as a function of temperature for two VSSL strain silicon–germanium materials and a non-VSSL material. Calculation of the figure of merit (ZT) versus temperature for a VSSL demonstrated a 17 times increase in power factor at the expense of a 4 times increase in thermal conductivity at room temperature compared to a comparable uniform superlattice. Calculation determined a ZT of 0.20 for a VSSL compared to a ZT of 0.04 for non-VSSL material at 400 K. VSSLs proved to be a candidate material to further increased ZT near room temperature for superlattice materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.O’Dwyer, M.F., Lewis, R.A., Zhang, C., and Humphrey, T.E.: Electronic efficiency in nanostructured thermionic and thermoelectric devices. Phys. Rev. B 72, 205330 (2005).CrossRefGoogle Scholar
2.Summers, C.J. and Brennan, K.F.: Variably spaced superlattice energy filter, a new device design concept for high-energy electron injection. Appl. Phys. Lett. 48, 806808 (1986).CrossRefGoogle Scholar
3.Humphrey, T.E. and Linke, H.: Reversible thermoelectric nanomaterials. Phys. Rev. Lett. 94, 096601 (2005).CrossRefGoogle ScholarPubMed
4.Bulusu, A. and Walker, D.G.: One-dimensional thin-film phonon transport with generation. Microelectron. J. 39, 950956 (2008).CrossRefGoogle Scholar
5.Bulusu, A. and Walker, D.G.: Quantum modeling of thermoelectric performance of strained Si/Ge/Si superlattices using the nonequilibrium Green’s function method. J. Appl. Phys. 102, 073713 (2007).CrossRefGoogle Scholar
6.Zhang, W., Fisher, T.S., and Mingo, N.: The atomistic Green’s function method: An efficient simulation approach for nanoscale phonon transport. Numer. Heat Transfer 51B, 333349 (2007).CrossRefGoogle Scholar
7.Hopkins, P.E., Norris, P.M., Tsegaye, M.S., and Ghosh, A.W.: Extracting phonon thermal conductance across atomic junctions: Nonequilibrium Green’s function approach compared to semiclassical methods. J. Appl. Phys. 106, 063503 (2009).CrossRefGoogle Scholar
8.Murphy-Armando, F. and Fahy, S.: First-principles calculation of carrier-phonon scattering in n-type Si 1−xGex alloys. Phys. Rev. B 78, 035202 (2008).CrossRefGoogle Scholar
9.Liu, P.Q., Hoffman, A.J., Escarra, M.D., Franz, K.J., Khurgin, J.B., Dikmelik, Y., Wang, X., Fan, J-Y., and Gmachl, C.F.: Highly power-efficient quantum cascade lasers. Nat. Photon 4, 95 (2010).CrossRefGoogle Scholar
10.Bai, Y., Slivken, S., Kuboya, S., Darvish, S.R., and Razeghi, M.: Quantum cascade lasers that emit more light than heat. Nat. Photon 4, 99 (2010).CrossRefGoogle Scholar
11.Escarra, M., Benz, A., Bhatt, A., Hoffman, A., Wang, X., Fan, J.-Y., and Gmachl, C.: Thermoelectric effect in quantum cascade lasers. Photon. J. IEEE 2, 500509 (2010).CrossRefGoogle Scholar
12.Evans, A., Yu, J.S., David, J., Doris, L., Mi, K., Slivken, S., and Razeghi, M.: High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers. Appl. Phys. Lett. 84, 314316 (2004).CrossRefGoogle Scholar
13.Datta, S.: Quantum transport: Atom to transistor (Cambridge University Press, New York, 2005).CrossRefGoogle Scholar
14.Van de Walle, C.G.: Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 18711883 (1989).CrossRefGoogle Scholar
15.Krishnamurthy, S., Sher, A., and Chen, A.-B.: Band structures of SixGe 1−x alloys. Phys. Rev. B 33, 10261035 (1986).CrossRefGoogle ScholarPubMed
16.Kittel, C.: Introduction to solid state physics, 6th ed. (Wiley, New York, 1986).Google Scholar
17.Harrison, W.: Electronic structure and the properties of solids (W.H. Freeman and Company, New York, 1989).Google Scholar