Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-01T03:11:07.776Z Has data issue: false hasContentIssue false

Thermoelectric nanocomposite from the metastable void filling in caged skutterudite

Published online by Cambridge University Press:  03 June 2011

Zhen Xiong
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Lili Xi
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Juan Ding
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Xihong Chen
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Xiangyang Huang
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Hui Gu
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Lidong Chen*
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Wenqing Zhang*
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
*
b)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

We report a novel approach to realize the formation of well-distributed nanodispersions in n-type filled skutterudite through the manipulation of metastable void fillers by a designed sophisticated process of materials synthesis. Metastable Ga filling in CoSb3 is proved to happen at high temperature. The subsequent controlled annealing procedure drives Ga out of the crystal voids and finally leads to the homogeneous dispersion of GaSb nanodots with an average size of 11 nm in CoSb3 matrix. The grain size of nanodispersions can be manipulated by the controlled cooling procedure. The well-distributed nanodispersions are observed to enhance Seebeck coefficients and reduce lattice thermal conductivity at low temperature. Therefore, the thermoelectric performance of nanocomposite is improved in the whole temperature range. The highest figure of merit (ZT) is obtained to be 1.45 at 850 K, and an average ZT of 0.99 in 300−850 K is achieved for Yb0.26Co4Sb12/0.2GaSb nanocomposite.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Beyer, H., Nurnus, J., Böttner, H., Lambrecht, A., Roch, T., and Bauer, G.: PbTe based superlattice structures with high thermoelectric efficiency. Appl. Phys. Lett. 80, 1216 (2002).CrossRefGoogle Scholar
2.Böttner, H., Chen, G., and Venkatasubramanian, R.: Aspects of thin-film superlattice thermoelectric materials, devices, and applications. MRS Bull. 31, 211 (2006).CrossRefGoogle Scholar
3.Poudel, B., Hao, Q., Ma, Y., Lan, Y.C., Minnich, A., Yu, B., Yan, X., Wang, D.Z., Muto, A., Vashaee, D., Chen, X.Y., Liu, J.M., Dresselhaus, M.S., Chen, G., and Ren, Z.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).CrossRefGoogle ScholarPubMed
4.Xie, W., He, J., Kang, H.J., Tang, X., Zhu, S., Laver, M., Wang, S., Copley, J.R.D., Brown, C.M., Zhang, Q., and Tritt, T.M.: Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi, Sb)2Te3 nanocomposites. Nano Lett. 10, 3283 (2010).CrossRefGoogle Scholar
5.Ji, X., He, J., Su, Z., Gothard, N., and Tritt, T.M.: Improved thermoelectric performance in polycrystalline p-type Bi2Te3 via an alkali metal salt hydrothermal nanocoating treatment approach. J. Appl. Phys. 104, 034907 (2008).CrossRefGoogle Scholar
6.Hsu, K.F., Loo, S., Guo, F., Chen, W., Dyck, J.S., Uher, C., Hogan, T., Polychroniadis, E.K., and Kanatzidis, M.G.: Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303, 818 (2004).CrossRefGoogle ScholarPubMed
7.Ke, X., Chen, C., Yang, J., Wu, L., Zhou, J., Li, Q., Zhu, Y., and Kent, P.R.C.: Microstructure and a nucleation mechanism for nanoprecipitates in PbTe-AgSbTe2. Phys. Rev. Lett. 103, 145502 (2009).CrossRefGoogle Scholar
8.Heremans, J.P., Thrush, C.M., and Morelli, D.T.: Thermopower enhancement in lead telluride nanostructures. Phys. Rev. B 70, 115334 (2004).CrossRefGoogle Scholar
9.Androulakis, J., Lin, C.-H., Kong, H.-J., Uher, C., Wu, C.-I., Hogan, T., Cook, B.A., Caillat, T., Paraskevopoulos, K.M., and Kanatzidis, M.G.: Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: Enhanced performance in Pb1-xSnxTe-PbS. J. Am. Chem. Soc. 129, 9780 (2007).CrossRefGoogle Scholar
10.Kim, W., Zide, J., Gossard, A., Klenov, D., Stemmer, S., Shakouri, A., and Majumdar, A.: Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006).CrossRefGoogle ScholarPubMed
11.Caillat, T., Borshchevsky, A., and Fleurial, J.P.: Properties of single crystalline semiconducting CoSb3. J. Appl. Phys. 80, 4442 (1996).CrossRefGoogle Scholar
12.Morelli, D.T., Meisner, G.P., Chen, B., Hu, S., and Uher, C.: Cerium filling and doping of cobalt triantimonide. Phys. Rev. B 56, 7376 (1997).CrossRefGoogle Scholar
13.Sales, B.C., Mandrus, D., and Williams, R.K.: Filled skutterudite antimonides: A new class of thermoelectric materials. Science 272, 1325 (1996).CrossRefGoogle ScholarPubMed
14.Xi, L., Yang, J., Lu, C., Mei, Z., Zhang, W., and Chen, L.: Systematic study of the multiple-element filling in caged skutterudite CoSb3. Chem. Mater. 22, 2384 (2010).CrossRefGoogle Scholar
15.Zhao, X.Y., Shi, X., Chen, L.D., Zhang, W.Q., Bai, S.Q., Pei, Y.Z., Li, X.Y., and Goto, T.: Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties. Appl. Phys. Lett. 89, 092121 (2006).CrossRefGoogle Scholar
16.Alboni, P.N., Ji, X., He, J., Gothard, N., and Tritt, M.T.: Thermoelectric properties of La0.9CoFe3Sb12-CoSb3 skutterudite nanocomposites. J. Appl. Phys. 103, 5 (2008).CrossRefGoogle Scholar
17.He, Z., Stiewe, C., Platzek, D., Karpinski, G., Müller, E., Li, S., Toprak, M., and Muhammed, M.: Nano ZrO2/CoSb3 composites with improved thermoelectric figure of merit. Nanotechnology 18, 235602 (2007).Google Scholar
18.Xiong, Z., Chen, X.H., Zhao, X.Y., Bai, S.Q., Huang, X.Y., and Chen, L.D.: Effects of nano-TiO2 dispersion on the thermoelectric properties of filled-skutterudite Ba0.22Co4Sb12. Solid State Sci. 11, 1612 (2009).CrossRefGoogle Scholar
19.Li, H., Tang, X., Su, X., and Zhang, Q.: Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. Appl. Phys. Lett. 92, 202114 (2008).CrossRefGoogle Scholar
20.Li, H., Tang, X., Zhang, Q., and Uher, C.: High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Appl. Phys. Lett. 94, 102114 (2009).CrossRefGoogle Scholar
21.Nolas, G.S., Kaeser, M., Littleton, R.T. IV, and Tritt, T.M.: High figure of merit in partially filled ytterbium skutterudite materials. Appl. Phys. Lett. 77, 1855 (2000).CrossRefGoogle Scholar
22.Chen, L.D., Kawahara, T., Tang, X.F., Goto, T., Hirai, T., Dyck, J.S., Chen, W., and Uher, C.: Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. J. Appl. Phys. 90, 1864 (2001).CrossRefGoogle Scholar
23.Zhao, X.Y., Shi, X., Chen, L.D., Zhang, W., Bai, S.Q., Pei, Y.Z., Li, X.Y., and Goto, T.: Synthesis and thermoelectric properties of Sr-filled skutterudite SryCo4Sb12. J. Appl. Phys. 99, 053711 (2006).CrossRefGoogle Scholar
24.Pei, Y.Z., Yang, J., Chen, L.D., Zhang, W., Salvador, J.R., and Yang, J.: Improving thermoelectric performance of caged compounds through light-element filling. Appl. Phys. Lett. 95, 042101 (2009).CrossRefGoogle Scholar
25.Yang, J., Hao, Q., Wang, H., Lan, Y.C., He, Q.Y., Minnich, A., Wang, D.Z., Harriman, J.A., Varki, V.M., Dresselhaus, M.S., Chen, G., and Ren, Z.F.: Solubility study of Yb in n-type skutterudites YbxCo4Sb12 and their enhanced thermoelectric properties. Phys. Rev. B 80, 115329 (2009).Google Scholar
26.Kresse, G. and Furthmüler, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).CrossRefGoogle ScholarPubMed
27.Shi, X., Zhang, W., Chen, L.D., and Yang, J.: Filling fraction limit for intrinsic voids in crystals: Doping in skutterudites. Phys. Rev. Lett. 95, 185503 (2005).CrossRefGoogle ScholarPubMed
28.Yang, J., Zhang, W., Bai, S.Q., Mei, Z., and Chen, L.D.: Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R=La, Ce, and Sr). Appl. Phys. Lett. 90, 192111 (2007).CrossRefGoogle Scholar
29.Chase, M.W. Jr., Davies, C.A., Downey, J.R. Jr., Frurip, D.J., McDonald, R.A., and Syverud, A.N.: JANAF thermochemical tables. Third edition. J. Phys. Chem. Ref. Data 14, 1204 (1985).Google Scholar
30.Dinsdale, A.T.: SGTE Data for pure elements. Calphad 15, 317 (1991).CrossRefGoogle Scholar
31.Sun, X.F., Ono, S., Zhao, X., Pang, Z.Q., Abe, Y., and Ando, Y.: Doping dependence of phonon and quasiparticle heat transport of pure and Dy-doped Bi2Sr2CaCu2O8+δ single crystals. Phys. Rev. B 77, 094515 (2008).CrossRefGoogle Scholar
32.Lamberton, G.A., Tedstrom, R.H., Tritt, T.M., and Nolas, G.S.: Thermoelectric properties of Yb-filled Ge-compensated CoSb3 skutterudite materials. J. Appl. Phys. 97, 113715 (2005).Google Scholar
33.Xiong, Z., Chen, X., Huang, X., Bai, S.Q., and Chen, L.D.: High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy. Acta Mater. 58, 3995 (2010).CrossRefGoogle Scholar
34.Guloy, A.M., Ramlau, R., Tang, Z., Schnelle, W., Baitinger, M., and Grin, Y.: A guest-free germanium clathrate. Nature 443, 320 (2006).CrossRefGoogle ScholarPubMed
35.Toberer, E.S., Christensen, M., Iversen, B.B., and Snyder, G.J.: High temperature thermoelectric efficiency in Ba8Ga16Ge30. Phys. Rev. B 77, 075203 (2008).CrossRefGoogle Scholar