Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T07:20:42.972Z Has data issue: false hasContentIssue false

Thermoelectric and transport properties of nanostructured Bi2Te3 by spark plasma sintering

Published online by Cambridge University Press:  09 February 2011

Zhihui Zhang*
Affiliation:
University of California, Davis, Department of Chemical Engineering and Materials Science, Davis, California 95616
Peter A. Sharma
Affiliation:
Sandia National Laboratories, Energy Nanomaterials Sciences, Livermore, California 94551-0969
Enrique J. Lavernia
Affiliation:
University of California, Davis, Department of Chemical Engineering and Materials Science, Davis, California 95616
Nancy Yang
Affiliation:
Sandia National Laboratories, Energy Nanomaterials Sciences, Livermore, California 94551-0969
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

N-type Bi2Te3 alloys with different microstructural length scales were prepared by mechanical milling and spark plasma sintering (SPS). The electrical resistivity, thermal conductivity, Seebeck coefficient, carrier concentration, and Hall mobility along and perpendicular to the loading direction were determined and characterized. The SPS sintered bulk disks using nanostructured powder contain high nanoporosity and weak (00l) texture along the loading axis, in contrast to those obtained with coarse powder. The influence of nanoporosity and texture on the thermoelectric and transport properties in the n-type Bi2Te3 alloys is discussed in light of the microstructural characteristics at different length scales.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tritt, T.M. and Subramanian, M.A.: Thermoelectric materials, phenomena, and applications: A bird’s eye view. MRS Bull. 31(3), 188 (2006).CrossRefGoogle Scholar
2.Scherrer, H. and Scherrer, S.: Bismuth telluride, antimony telluride, and their solid solutions, in CRC Handbook of Thermoelectrics, edited by Rowe, D.M. (CRC Press, Boca Raton, Florida, 1995).Google Scholar
3.Yamashita, O., Tomiyoshi, S., and Makita, K.: Bismuth telluride compounds with high thermoelectric figures of merit. J. Appl. Phys. 93(1), 368 (2003).CrossRefGoogle Scholar
4.Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., and Ren, Z.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).CrossRefGoogle ScholarPubMed
5.Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J.P., and Gogna, P.: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19(8), 1043 (2007).CrossRefGoogle Scholar
6.Park, K., Seo, J.H., Cho, D.C., Choi, B.H., and Lee, C.H.: Thermoelectric properties of p-type Te doped Bi0.5Sb1.5Te3 fabricated by powder extrusion. Mater. Sci. Eng., B 88(1), 103 (2002).CrossRefGoogle Scholar
7.Perrin, D., Chitroub, M., Scherrer, S., and Scherrer, H.: Study of the n-type Bi2Te2.7Se0.3 doped with bromine impurity. J. Phys. Chem. Solids 61(10), 1687 (2000).CrossRefGoogle Scholar
8.Munir, Z.A., Anselmi-Tamburini, U., and Ohyanagi, M.: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41(3), 763 (2006).CrossRefGoogle Scholar
9.Mukhopadhyay, A. and Basu, B.: Consolidation microstructure property relationships in bulk nanoceramics and ceramic nanocomposites: A review. Int. Mater. Rev. 52(5), 257 (2007).CrossRefGoogle Scholar
10.Omori, M.: Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng., A 287(2), 183 (2000).CrossRefGoogle Scholar
11.Mamedov, V.: Spark plasma sintering as advanced PM sintering method. Powder Metall. 45(4), 322 (2002).CrossRefGoogle Scholar
12.Zhao, L.D., Zhang, B.P., Li, J.F., Zhang, H.L., and Liu, W.S.: Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sci. 10(5), 651 (2008).CrossRefGoogle Scholar
13.Bottner, H., Ebling, D.G., Jacquot, A., Konig, J., Kirste, L., and Schmidt, J.: Structural and mechanical properties of spark plasma sintered n- and p-type bismuth telluride alloys. Phys. Status Solidi RRL 1(6), 235 (2007).CrossRefGoogle Scholar
14.Fan, X.A., Yang, J.Y., Chen, R.G., Yun, H.S., Zhu, W., Bao, S.Q., and Duan, X.K.: Characterization and thermoelectric properties of p-type 25%Bi2Te3-75% Sb2Te3 prepared via mechanical alloying and plasma activated sintering. J. Phys. D: Appl. Phys. 39(4), 740 (2006).CrossRefGoogle Scholar
15.Chen, L., Jiang, J., and Shi, X.: Thermoelectric performance of textured Bi2Te3-based sintered materials prepared by spark plasma sintering, in Thermoelectric Materials 2003; Research and Applications, edited by Nolas, G.S., Yang, J., Hogan, T.P., and Johnson, D.C. (Mater. Res. Soc. Symp. Proc. 793, Warrendale, PA, 2004), S9.3, p. 365.Google Scholar
16.Swinkels, F.B. and Ashby, M.F.: Overview II—A second report on sintering diagrams. Acta Metall. 29(2), 259 (1981).CrossRefGoogle Scholar
17.Atkinson, H.V. and Davies, S.: Fundamental aspects of hot isostatic pressing: An overview. Metall. Mater. Trans. A 31(12), 2981 (2000).CrossRefGoogle Scholar
18.Arzt, E., Ashby, M.F., and Easterling, K.E.: Practical applications of hot-isostatic pressing diagrams—Four case studies. Metall. Trans. A 14(2), 211 (1983).CrossRefGoogle Scholar
19.Olevsky, E.A., Kandukuri, S., and Froyen, L.: Consolidation enhancement in spark-plasma sintering: Impact of high heating rates. J. Appl. Phys. 102(11), 114913 (2007).CrossRefGoogle Scholar
20.Olevsky, E.A. and Froyen, L.: Impact of thermal diffusion on densification during SPS. J. Am. Ceram. Soc. 92(1), S122 (2009).CrossRefGoogle Scholar
21.Stanciu, L.A., Kodash, V.Y., and Groza, J.R.: Effects of heating rate on densification and grain growth during field-assisted sintering of alpha-Al2O3 and MoSi2 powders. Metall. Mater. Trans. A 32(10), 2633 (2001).CrossRefGoogle Scholar
22.Lotgering, F.K.: Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. J. Inorg. Nucl. Chem. 9(2), 113 (1959).CrossRefGoogle Scholar
23.Gothard, N., Ji, X., He, J., and Tritta, T.M.: Thermoelectric and transport properties of n-type Bi2Te3 nanocomposites. J. Appl. Phys. 103(5), 054314 (2008).CrossRefGoogle Scholar
24.Martin, J., Wang, L., Chen, L., and Nolas, G.S.: Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. Phys. Rev. B 79(11), 115311 (2009).CrossRefGoogle Scholar
25.Seeger, K.: Semiconductor Physics: An Introduction. (Springer, Berlin, 2004).CrossRefGoogle Scholar
26.Kim, D.H. and Mitani, T.: Thermoelectric properties of fine-grained Bi2Te3 alloys. J. Alloys Compd. 399(1–2), 14 (2005).CrossRefGoogle Scholar
27.Navratil, J., Stary, Z., and Plechacek, T.: Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing. Mater. Res. Bull. 31(12), 1559 (1996).CrossRefGoogle Scholar
28.Horak, J., Cermak, K., and Koudelka, L.: Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals. J. Phys. Chem. Solids 47(8), 805 (1986).CrossRefGoogle Scholar
29.Miller, G.R. and Li, C.Y.: Evidence for existence of antistructure defects in bismuth telluride by density measurements. J. Phys. Chem. Solids 26(1), 173 (1965).CrossRefGoogle Scholar
30.Zhao, L.D., Zhang, B.P., Li, J.F., Zhou, M., and Liu, W.S.: Effects of process parameters on electrical properties of n-type Bi2Te3 prepared by mechanical alloying and spark plasma sintering. Physica B 400(1–2), 11 (2007).CrossRefGoogle Scholar
31.Masetti, B., Severi, M., and Solmi, S.: Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon. IEEE Trans. Electron. Dev. 30(7), 764 (1983).CrossRefGoogle Scholar
32.He, Q.Y., Hu, S.J., Tang, X., Lan, Y.C., Yang, J., Wang, X.W., Ren, Z.F., Hao, Q., and Chen, G.: The great improvement effect of pores on ZT in Co1–xNi xSb3 system. Appl. Phys. Lett. 93(4), 042108 (2008).CrossRefGoogle Scholar
33.Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., and Chen, G.: Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2(5), 466 (2009).CrossRefGoogle Scholar
34.Fleurial, J.P., Gailliard, L., Triboulet, R., Scherrer, H., and Scherrer, S.: Thermal-properties of high-quality single-crystals of bismuth telluride. 1. Experimental characterization. J. Phys. Chem. Solids 49(10), 1237 (1988).CrossRefGoogle Scholar