Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-31T19:10:30.500Z Has data issue: false hasContentIssue false

Thermodynamic description of hydrogen storage materials Cr–Ti–Zr and Fe–Ti–Zr

Published online by Cambridge University Press:  13 April 2017

Wojciech Gierlotka*
Affiliation:
Materials Science and Engineering Department, National Dong Hwa University, Hualien 97401, Taiwan
Cho-yu Lee
Affiliation:
Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005 Taiwan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Modern hydrogen technology requires materials with high capacity storage. Many metals and alloys form cheap metal hydrides that can contain a high volume density of hydrogen. The quaternary alloy Cr–Fe–Ti–Zr with Laves phases is one promising hydrogen storage material. Understanding phase equilibria properties is essential to improve the Laves phases’ hydrogen storage capacity. In this work, the thermodynamic description of two constituent ternary phase materials, Cr–Ti–Zr and Fe–Ti–Zr are investigated using the Calphad method. A set of Gibbs energies was optimized during this work and good agreement between modeling and available experimental information was found. Moreover, a new thermodynamic model for a binary Fe–Zr system was developed based on recent experimental investigation about intermetallic compounds FeZr2 and FeZr3. Obtained in this work results can find application in development of new hydrogen storage materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Jürgen Eckert

References

REFERENCES

Cho, S.W., Han, C.S., Park, C.N., and Akiba, E.: Hydrogen storage characteristics of Ti–Zr–Cr–V alloys. J. Alloys Compd. 289, 244 (1999).Google Scholar
Shaltiel, D., Jacob, I., and Davidov, D.: Hydrogen absorption and desorption properties of AB2 Laves-phase pseudobinary compounds. J. Less-Common Met. 53, 117 (1977).CrossRefGoogle Scholar
Ivey, D.G. and Northwood, D.O.: Hydrogen site occupancy in AB2 Laves phases. J. Less-Common Met. 115, 23 (1986).Google Scholar
Kaufman, L. and Bernstein, H.: Computer Calculation of Phase Diagrams (Academic Press, NY, USA, 1970).Google Scholar
Pavlu, J., Vrestal, J., and Sob, M.: Stability of Laves phases in the Cr–Zr system. Calphad 33, 382 (2009).Google Scholar
Kresse, G. and Furthmüller, J.: Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).Google Scholar
Domagala, R.F., McPherson, D.J., and Hansen, M.: System zirconium–chromium. Trans. AIME 197, 279 (1953).Google Scholar
Gebhart, E., Rexer, J., and Petzow, G.: Das system zirkonium–tantal–chrom. Z. Metallkd. 58, 534 (1967).Google Scholar
Budberg, B., Alisova, S.P., and Musaev, R.S.: Phase diagram of the Zr–Cr system. Izv. Akad. Nauk SSSR, Met. 3, 222 (1968).Google Scholar
Rumball, W.M. and Elder, F.G.: Phase equilibria in zirconium-rich zirconium–chromium–oxygen alloys. J. Less-Common Met. 19, 345 (1969).Google Scholar
Svechnikov, V.N. and Spektor, A.C.: Phase diagram of the Cr–Zr system in the region of the compound ZrCr2 . Izv. AN SSSR 4, 201 (1971).Google Scholar
Petkov, V.V., Prima, S.B., Tretyachenkov, L.A., and Kocherzhinskij, Yu.A.: The binary Cr–Zr system. Metallofiz. 46, 80 (1973).Google Scholar
Zeng, K., Hämäläinen, M., and Luoma, R.: A thermodynamic assessment of the Cr–Zr system. Z. Metallkd. 84, 23 (1993).Google Scholar
Zeng, K., Hämäläinen, M., and Lilius, K.: Thermodynamic modeling of the Laves phases in the Cr·Zr system. Calphad 17, 101 (1993).Google Scholar
Pavlu, J., Vrestal, J., and Sob, M.: Thermodynamic modeling of Laves phases in the Cr–Hf and Cr–Ti systems: Reassessment using first-principles results. Calphad 34, 215 (2010).CrossRefGoogle Scholar
Carlson, O.N. and Alexander, D.G.: The hafnium–chromium system. J. Less-Common Met. 15, 361 (1968).CrossRefGoogle Scholar
Svechnikov, V.N., Shurin, A.K., and Dmitrijeva, G.P.: On the CrTi2 phase. Prevrashchen. Faz., An Ukr. SSR 1965, 159 (1965).Google Scholar
Svechnikov, V.N., Teslyuk, M.Yu., Kocherzhinsky, Yu.A., Petkov, V.V., and Dabizha, E.V.: Three modifications of TiCr2 . Dopov Akad. Nauk Ukr. SSR Ser. A 32, 837 (1970).Google Scholar
McQuillan, M.K.: A provisional constitutional diagram of the chromium–titanium system. J. Inst. Met. 80, 379 (1951).Google Scholar
McQuillan, M.K.: The effect of the elements of the first long period on the α–β transformation in titanium. J. Inst. Met. 82, 433 (1954).Google Scholar
Cuff, F.B., Grant, N.J., and Floe, C.F.: Titanium–chromium phase diagram. Trans. AIME 194, 848 (1952).Google Scholar
Duwez, P. and Taylor, J.L.: A partial titanium–chromium phase diagram and the crystal structure of TiCr2 . Trans. AMS 44, 495 (1952).Google Scholar
van Thyne, R.J., Kessler, H.D., and Hansen, M.: The systems titanium–chromium and titanium–iron. Trans. AMS 44, 974 (1952).Google Scholar
Bagarjatskij, Yu.A., Nosova, G.I., and Tagunova, T.V.: Study of phase diagrams of the alloys titanium–chromium, titanium–tungsten, and titanium–chromium–tungsten, prepared by the method of powder metallurgy. Russ. J. Inorg. Chem. 3, 330 (1958).Google Scholar
Ermanis, F., Farrar, P.A., and Argolin, H.M.: A reinvestigaton of the systems Ti–Cr and Ti–V. Trans. AIME 221, 904 (1961).Google Scholar
Mikheev, V.S. and Alekasashin, V.S.: Electrical volume resistivity of alloys of the titanium–chromium system up to temperatures of 1100 °C. Fiz. Met. Metall. 14, 62 (1962).Google Scholar
Farrar, P.A. and Margolin, H.: A reinvestigation of the chromium-rich region of the titanium–chromium system. Trans. AIME 227, 1342 (1963).Google Scholar
Minayeva, S.A., Budberg, P.B., and Gavze, A.L.: Phase structure of Ti–Cr alloys. Russ. Metall. 4, 205 (1971).Google Scholar
Zhuang, W., Shen, J., Liu, Y., Ling, L., Shang, S., Du, Y., and Schuster, J.C.: Thermodynamic optimization of the Cr–Ti system. Z. Metallkd. 91, 121 (2000).Google Scholar
Jiang, M., Oikawa, K., Ikeshoji, T., Wulff, L., and Ishida, K.: Thermodynamic calculations of Fe–Zr and Fe–Zr–C systems. J. Phase Equilib. 22, 406 (2001).Google Scholar
Sudavtsova, V.S., Kurach, V.P., and Batalin, G.I.: Thermochemical, properties of liquid binary alloys Fe–(Y, Zr, Nb, Mo). Izv. Akad. Nauk SSSr, Metall 3, 60 (1987).Google Scholar
Sidorov, O.Y., Valishev, M.G., Esin, Y.O., and Gel’d, P.V.: Formation heat of iron–zirconium melts. Izv. Akad. Nauk SSSR, Metall. 6, 23 (1988).Google Scholar
Wang, H., Luck, R., and Predel, B.: Calorimetric determination of the enthalpy of mixing of liquid iron–zirconium alloys. Z. Metallkd. 81, 843 (1990).Google Scholar
Rosner-Kuhn, M., Qin, J.P., Schaefers, K., Thiedemann, U., and Frohberg, M.G.: Temperature-dependence of the mixing enthalpy and excess heat-capacity in the liquid-system iron–zirconium. Z. Metallkd. 86, 682 (1995).Google Scholar
Svechnikov, V.N. and Spector, A.T.: Verification of Fe–Zr alloy equilibrium phase diagrams. Vaprosy Fiz. Metall. Metalloved. 11, 30 (1960).Google Scholar
Svechnikov, V.N. and Spektor, A.T.: The iron–zirconium phase diagram. Dokl. Akad. Nauk SSSR 143, 613 (1962).Google Scholar
Abrahamson, E.P. and Lopata, S.L.: The lattice parameter and solubility limits of α iron as affected by some binary transition–element additions. Trans. AIME 236, 76 (1966).Google Scholar
Malakhova, T.O. and Alekseyeva, Z.M.: The Zr–Fe phase diagram in the range 20–40 at.% Fe and the crystalline structure of the intermetallic compound Zr3Fe. J. Less-Common Met. 81, 293 (1981).CrossRefGoogle Scholar
Malakhova, T.O. and Kobylkin, A.N.: Phase diagram for Zr–Fe (0–66.6 at.% Fe). Russ. Metall. 2, 187 (1982).Google Scholar
Tanner, L.E. and Levinson, D.W.: Observations on the system zirconium–iron. Trans. AIME 215, 1066 (1959).Google Scholar
Stupel, M.M., Bamberger, M., and Weiss, B.Z.: Determination of Fe solubility in αZr by Mössbauer spectroscopy. Scr. Metall. 19, 739 (1985).Google Scholar
Aubertin, F., Gonser, U., Campbell, S.J., and Wagner, H.G.: An appraisal of the phases of the zirconium–iron system. Z. Metallkd. 76, 237 (1985).Google Scholar
Borrelly, R., Merle, P., and Adami, L.: Study of the solubility of iron in zirconium by thermoelectric power measurements. J. Nucl. Mater. 170, 147 (1990).CrossRefGoogle Scholar
Servant, C., Gueneau, C., and Ansara, I.: Experimental and thermodynamic assessment of the Fe·Zr system. J. Alloys Compd. 220, 19 (1995).Google Scholar
Hari Kumar, K.C., Wollants, P., and Delaey, L.: Thermodynamic assessment of the Ti·Zr system and calculation of the Nb·Ti·Zr phase diagram. J. Alloys Compd. 206, 121 (1994).Google Scholar
Auffredic, J.P., Etchessahar, E., and Debuigne, D.: Remarques sur le diagramme de phases Ti–Zr: Étude microcalorimétrique de la transition α ⇄ β [Calorimetric study of transformation α ⇄ β]. J. Less-Common Met. 84, 49 (1982).Google Scholar
Blacktop, J., Crangle, J., and Argent, B.B.: The α → β transformation in the Ti–Zr system and the influence of additions of up to 50 at.% Hf. J. Less-Common Met. 109, 375 (1985).Google Scholar
Peyzulayev, Sh.I., Sumin, V.V., Bykov, V.N., and Popova, L.K.: Activities of titanium and iron in binary Alloys with zirconium. lzv. Akad. Nauk SSSI, Met. 4, 144 (1971).Google Scholar
Zee, R.H., Watters, J.F., and Davidson, R.D.: Diffusion and chemical activity of Zr–Sn and Zr–Ti systems. Phys. Rev. B: Condens. Matter Mater. Phys. 34, 6895 (1986).Google Scholar
Rudy, E.: Tech. Rep. AFML-TR-65–2, Part V: Compendium of Phase Diagram Data (Wright Patterson Air Force Base, Ohio, 1969).Google Scholar
Farrar, P.A. and Adler, S.: System titanium–zriconium. Trans. AIME 236, 1061 (1966).Google Scholar
Chatterji, D., Hepworth, M.T., and Hruska, S.J.: On the system Ti–Zr. Metall. Trans. 2, 1271 (1971).CrossRefGoogle Scholar
Etchessahar, E. and Debuigne, D.: Study of the allotropic transformation in equiatomic titanium–zirconium alloys: Influence of purity of the materials and nitrogen on the phase transition. Mem. Sci. Rev. Metall. 74, 195 (1977).Google Scholar
Dumitrescu, L.F.S., Hillert, M., and Saunders, N.: Comparison of Fe–Ti assessments. J. Phase Equilib. 19, 441 (1998).Google Scholar
Murray, J.L.: Phase Diagrams of Binary Titanium Alloys, Murray, J.L., ed. (ASM International, Metals Park, OH, 1987).Google Scholar
Balasubramanian, K.: Unpublished research (Dept. Materials Science and Engineering, KTH, Stockholm, 1989).Google Scholar
Hari Kumar, K.C., Wollants, P., and Delaey, L.: Thermodynamic reassessment and calculation of Fe–Ti phase diagram. Calphad 18, 223 (1994).Google Scholar
Jonsson, S.: Assessment of the Fe–Ti system. Metall. Mater. Trans. B 29, 361 (1998).Google Scholar
I. Ansara, A.T. Dinsdale, and M.H. Rand, eds.: COST 508 - Final Report: Thermodynamic Database for Light Metal Al-alloys (European Communities, Brussels, 1998).Google Scholar
Kubaschewski, O. and Dench, W.A.: The heats of formation in the systems titanium–aluminium and titanium–iron. Acta Metall. 3, 339 (1955).Google Scholar
Fruehan, R.J.: Activities in liquid Fe-VO and Fe-BO alloys. Metall. Trans. 1, 2083 (1970).Google Scholar
Dyubanov, L.V., Stomakhin, A.Y., and Filippov, A.E.: Research into formation enthalpies of diluted solutions based on iron, cobalt, and nickel. Izv. V.U.Z Chem. Metall. 3, 5 (1975).Google Scholar
Furukawa, T. and Kato, E.: Thermodynamics of binary-liquid iron–titanium alloys by mass-spectrometry. Trans. ISIJ 16, 382 (1976).Google Scholar
Robinson, D. and Argent, B.B.: Thermodynamics of dilute solutions of the first-period transition elements in Fe. Met. Sci. 10, 219 (1976).Google Scholar
Esin, Y.O., Valishev, M.G., Ermakov, A.E., Geld, P.V., and Petrushevskii, M.S.: Partial and integral enthalpy of mixing of liquid Fe–Ti alloys. Izv. Akad. Nauk SSSR, Met. 3, 30 (1981).Google Scholar
Gachon, J.C., Notin, M., and Hertz, J.: The enthalphy of mixing of the intermediate phases in the systems FeTi, CoTi, and NiTi by direct reaction calorimetry. Thermochim. Acta 48, 155 (1981).Google Scholar
Wang, H., Luck, R., and Predel, B.: Heat capacities of intermetallic compounds in the iron–titanium system. Z. Metallkd. 84, 230 (1993).Google Scholar
A.T. Dinsdale, T.G. Chart, and E.H. Putland: NPL Report DMA (A) 96 (1985).Google Scholar
McQuillan, A.D.: The application of hydrogen equilibrium-pressure measurements to the investigation of titanium alloy systems. J. Inst. Met. 79, 73 (1951).Google Scholar
Hellawell, A. and Hume-Rothery, W.: The constitution of alloys of iron and manganese with transition elements of the first long period. Philos. Trans. R. Soc. London 249, 417 (1957).Google Scholar
Murakami, Y., Kimura, H., and Nishimura, Y.: An investigation on the titanium–iron–carbon system. Trans. Natl. Res. Inst. Met. 1, 7 (1959).Google Scholar
Speich, G.R.: Precipitation of Laves phases from iron–niobium (columbium) and iron–titanium solid solutions. Trans. AIME 224, 850 (1962).Google Scholar
Booker, P.H.: Temary phase equilibria in the systems Ti–Fe–C, Ti–Co–C and Ti–Ni–C, Ph.D. Thesis, Oregon Graduate Center, 1979.Google Scholar
Ko, M. and Nishizawa, T.: Effect of magnetic transition on the solubility of alloying elements in alpha iron. J. Jpn. Inst. Met. 43, 118 (1979).CrossRefGoogle Scholar
Dew-Hughes, D.: The addition of Mn and Al to the hydriding compound FeTi: Range of homogeneity and lattice parameters. Metall. Trans. 1A, 1219 (1980).Google Scholar
Ramnaekers, P.P.J., van Loo, E.J.J., and Bastion, G.E.: Phase relations, diffusion paths and kinetics in the system Fe–Ti–C at 1273 K. Z. Metallkd. 76, 245 (1985).Google Scholar
Kivilahti, J.K. and Tarasova, O.B.: The determination of the Ti-rich liquidus and solidus of the Ti–Fe system. Metall. Trans. 18A, 1679 (1987).Google Scholar
Qiu, C. and Jin, Z-E.: An experimental study and thermodynamic evaluation of the Fe–Ti–W system at 1000 °C. Scr. Metall. 28, 85 (1993).Google Scholar
Zhou, G.J., Jin, S., Liu, L.B., Liu, H.S., and Jin, Z.P.: Determination of isothermal section of Fe–Ti–Zr ternary system at 1173 K. Trans. Nonferrous Met. Soc. China 17, 963 (2007).Google Scholar
Zhou, G.J., Zeng, C., and Liu, Z.: Phase equilibria in the Fe–Ti–Zr system at 1023 K. J. Alloys Compd. 490, 463 (2010).CrossRefGoogle Scholar
Raghavan, V.: Fe–Ti–Zr (iron–titanium–zirconium). J. Phase Equilib. Diffus. 30, 109 (2009).Google Scholar
Stein, F., Sauthoff, G., and Palm, M.: Experimental determination of intermetallic phases, phase equilibria, and invariant reaction temperatures in the Fe–Zr system. J. Phase Equilib. 23, 480 (2002).Google Scholar
Kornilov, I.I., Belousov, O.K., and Musayev, R.S.: The Ti–Zr–Cr ternary system. Russ. Metall. 1, 135 (1969).Google Scholar
Musayev, R.S., Kornilov, I.I., and Belousov, O.K.: Constitution diagram and mechanical properties of Ti–Zr–Cr alloys. Russ. Metall. 1, 168 (1974).Google Scholar
SGTE Unary Database version v5.0—Scientific Group Thermodynamics Europe 2009.Google Scholar
Guggenheim, E.A.: Mixtures (Oxford University Press, London, U.K., 1952).Google Scholar
Saunders, N. and Miodownik, A.P.: Calphad—A Comprehensive Guide (Elsevier, Oxford, U.K., 1998).Google Scholar
Hillert, M. and Steffansson, L-I.: Regular-solution model for stoichiometric phases and ionic melts. Acta Chem. Scand. 24, 3618 (1970).Google Scholar
Andersson, J.O., Helander, T., Hoglund, L., Shi, P.F., and Sundman, B.: Thermo-Calc, and Dictra, computational tools for materials science. Calphad 26, 273 (2002).Google Scholar
Chen, S-L., Daniel, S., Zhang, F., Chang, Y.A., Yan, X-Y., Xie, F-Y., Schmid-Fetzer, R., and Oates, W.A.: The PANDAT software package and its applications. Calphad 26, 175 (2002).Google Scholar
Schmid-Fetzer, R., Andersson, D., Chevalier, P.Y., Eleno, L., Fabrichnaya, O., Kattner, U.R., Sundman, B., Wang, C., Watson, A., Zabdyr, L., and Zinkevich, M.: Assessment techniques, database design and software facilities for thermodynamics and diffusion. Calphad 31, 38 (2007).Google Scholar
H. Okamoto, ed.: ASM Handbook Volume III, 10th ed. (ASM International, Materials Park, OH, USA, 1992).Google Scholar