Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T09:21:08.477Z Has data issue: false hasContentIssue false

Thermochemistry of microporous silicotitanate phases in the Na2O–Cs2O–SiO2–TiO2–H2O system

Published online by Cambridge University Press:  31 January 2011

Hongwu Xu
Affiliation:
Thermochemistry Facility, Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95616
Alexandra Navrotsky
Affiliation:
Thermochemistry Facility, Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95616
May D. Nyman
Affiliation:
Sandia National Laboratories, Catalysis and Chemical Technologies, P.O. Box 5800, M.S. 0710, Albuquerque, New Mexico 87185
Tina M. Nenoff
Affiliation:
Sandia National Laboratories, Catalysis and Chemical Technologies, P.O. Box 5800, M.S. 0710, Albuquerque, New Mexico 87185
Get access

Abstract

Microporous silicotitanates can potentially be used as ion exchangers for removal of Cs+ from radioactive waste solutions. The enthalpies of formation from constituent oxides for two series of silicotitanates at 298 K have been determined by drop-solution calorimetry into molten 2PbO · B2O3 at 974 K: the (Na1−xCsx)3Ti4Si3O15(OH) · nH2O (n = 4 to 5) phases with a cubic structure (P43m), and the (Na1−xCsx)3Ti4Si2O13(OH) · nH2O (n = 4 to 5) phases with a tetragonal structure (P42/mcm). The enthalpies of formation from the oxides for the cubic series become more exothermic as Cs/(Na + Cs) increases, whereas those for the tetragonal series become less exothermic. This result indicates that the incorporation of Cs in the cubic phase is somewhat thermodynamically favorable, whereas that in the tetragonal phase is thermodynamically unfavorable and kinetically driven. In addition, the cubic phases are more stable than the corresponding tetragonal phases with the same Cs/Na ratios. These disparities in the energetic behavior between the two series are attributed to their differences in both local bonding configuration and degree of hydration.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Anderson, M.W., Terasaki, O., Ohsuna, T., Malley, P.J.O, Phillipou, A., MacKay, S.P., Ferreira, A., Rocha, J., and Lidin, S., Philos. Mag. B 71, 813 (1995).CrossRefGoogle Scholar
2.Nyman, M.D., Nenoff, T.M., Wang, L., Ewing, R.C., and Gu, B., (unpublished).Google Scholar
3.Anthony, R.G., Philip, C.V., and Dosch, R.G., Waste Management 13, 503 (1993).CrossRefGoogle Scholar
4.Balmer, M.L. and Bunker, B.C., Inorganic ion exchange evaluation and design—silicotitanate ion exchange waste conversion, Pacific Northwest Laboratory Report No. PNL-10460 (1995).CrossRefGoogle Scholar
5.Su, Y., Balmer, M.L., Wang, L., Bunker, B.C., Nyman, N., Nenoff, T., and Navrotsky, A., in Scientific Basis for Nuclear Waste XXII, edited by Wronkiewicz, D.J. and Lee, J.H. (Mater. Res. Soc. Symp. Proc. 556, Warrendale, PA 1999), p. 77.Google Scholar
6.Roberts, M.A., Sankar, G., Thomas, J.M., Jones, R.H., Du, H., Chen, J., Pang, W., and Xu, R., Nature 381, 401 (1996).CrossRefGoogle Scholar
7.Dadachov, M.S., Rocha, J., Ferreira, A., Lin, Z., and Anderson, M.W., Chem. Commun. No. 24 2371 (1997).Google Scholar
8.Navrotsky, A., Phys. Chem. Miner. 24, 222 (1997).CrossRefGoogle Scholar
9.Behrens, E.A., Poojary, D.M., and Clearfield, A., Chem. Mater. 8, 1236 (1996).CrossRefGoogle Scholar
10.Harrison, W.T.A, Gier, T.E., and Stucky, G.D., Zeolites 15, 408 (1995).CrossRefGoogle Scholar
11.Poojary, D.M., Bortun, A.I., Bortun, L.N., and Clearfield, A., Inorg. Chem. 35, 6131 (1996).CrossRefGoogle Scholar
12.Poojary, D.M., Cahill, R.A., and Clearfield, A., Chem. Mater. 6, 2364 (1994).CrossRefGoogle Scholar
13.Larson, A.C., and Von Dreele, R.B., GSAS, General Structure Analysis System, Los Alamos National Laboratory Report No. LAUR 86–748 (1994).Google Scholar
14.Thompson, P., Cox, D.E., and Hastings, J., J. Appl. Crystallogr. 20, 79 (1987).CrossRefGoogle Scholar
15.Navrotsky, A., Rapp, R.P., Smelik, E., Burnly, P., Circone, S., Chai, L., Bose, K., and Westrich, H.R., Am. Mineral 79, 1099 (1994).Google Scholar
16.Kiseleva, I., Navrotsky, A., Belitsky, I.A., and Fursenko, B.A., Am. Mineral 81, 668 (1996).CrossRefGoogle Scholar
17.Putnam, R.L., Navrotsky, A., Woodfield, B.F., Boerio-Goates, J., and Shapiro, J.L., J. Chem. Thermodynamics 31, 229 (1999).CrossRefGoogle Scholar
18.Robie, R.A., and Hemingway, B.S., Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures, Geological Survey Bulletin No. 2131 (1995).Google Scholar
19.Buerger, M.J., Dollase, W.A., and Garaycochea-Wittke, I., Z. Kristallogr. 125, 92 (1967).CrossRefGoogle Scholar
20.Dadachov, M.S. and Harrison, W.T.A, J. Solid State Chem. 134, 409 (1997).CrossRefGoogle Scholar
21.Johnson, G.K. and Gayer, K.H., J. Chem. Thermodynamics 12, 705 (1980).CrossRefGoogle Scholar
22.Navrotsky, A., Am. Mineral. 79, 589 (1994).Google Scholar
23.Roy, B.N. and Navrotsky, A., J. Am. Ceram. Soc. 67, 606 (1984).CrossRefGoogle Scholar
24.Shim, S-H., Navrotsky, A., Gaffney, T.R., and MacDougall, E., Am. Mineral. 84, 1870 (1999).CrossRefGoogle Scholar
25.Bunker, B.C. and Balmer, M.L. (unpublished).Google Scholar
26.Petrovic, I., Navrotsky, A., Davis, M.E., and Zones, S.I., Chem. Mater. 5, 1805 (1993).CrossRefGoogle Scholar
27.Hu, Y., Navrotsky, A., Chen, C-Y., and Davis, M.E., Chem. Mater. 7, 1816 (1995).CrossRefGoogle Scholar
28.Krestov, G.A., Thermodynamics of Solvation, English ed. (Ellis Horwood, New York, 1990).Google Scholar