Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T16:36:25.872Z Has data issue: false hasContentIssue false

Thermal stability of nanocrystalline nickel with yttrium additions

Published online by Cambridge University Press:  19 March 2013

K.A. Darling*
Affiliation:
Weapons and Materials Research Directorate, Lightweight and Specialty Metals Branch, RDRL-WMM-F, Aberdeen Proving Ground, Maryland 21005-5069
L.J. Kecskes
Affiliation:
Weapons and Materials Research Directorate, Lightweight and Specialty Metals Branch, RDRL-WMM-F, Aberdeen Proving Ground, Maryland 21005-5069
M. Atwater
Affiliation:
Department of Applied Engineering, Safety & Technology, Millersville University, Millersville, Pennsylvania 17551
J. Semones
Affiliation:
Department of Materials Science and Engineering, NC State University, Raleigh, North Carolina, 27695-7907
R.O. Scattergood
Affiliation:
Department of Materials Science and Engineering, NC State University, Raleigh, North Carolina, 27695-7907
C.C. Koch
Affiliation:
Department of Materials Science and Engineering, NC State University, Raleigh, North Carolina, 27695-7907
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nickel-yttrium nanocrystalline alloys with an as-milled grain size of approximately 6.5 nm were synthesized using high-energy cryogenic mechanical alloying. The microstructural changes due to annealing were characterized using x-ray line broadening, microhardness, focused ion beam channeling contrast imaging, and transmission electron microscopy. Experiments demonstrated that increasing yttrium content led to stabilization of the nanocrystalline grain size at elevated homologous annealing temperatures. Additionally, it was found that inadvertent contamination with nitrogen during the milling process caused the formation of yttrium nitride (YN) precipitates, which, in turn, resulted in an additional nonlinear hardening effect beyond the expected hardening due to grain-size reduction. Results reveal that kinetic pinning by YN particles is effective in retaining a nanostructure to relatively high temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ames, M., Markmann, J., Karos, R., Michels, A., Tschope, A., and Birringer, R.: Unraveling the nature of room temperature grain growth in nanocrystalline materials. Acta Mater. 56(16), 4255 (2008).CrossRefGoogle Scholar
Simoes, S., Calinas, R., Ferreira, P.J., Vieira, M.T., Viana, F., and Vieira, M.F.: Effect of annealing conditions on the grain size of nanocrystalline copper thin films. Mater. Sci. Forum 587588, 483 (2008).CrossRefGoogle Scholar
Simoes, S., Calinas, R., Ferreira, P.J., Vieira, M.T., Viana, F., and Vieira, M.F.: In situ TEM study of grain growth in nanocrystalline copper thin films. Nanotechnology 21(14), 145701 (2010).CrossRefGoogle ScholarPubMed
Yevtushenko, O., Natter, H., and Hempelmann, R.: Grain-growth kinetics of nanostructured gold. Thin solid films 515(1), 353 (2006).CrossRefGoogle Scholar
Taylor, P.L., Omotoso, O., Wiskel, J.B., Mitlin, D., and Burrell, R.E.: Impact of heat on nanocrystalline silver dressings: Part II: Physical properties. Biomaterials 26(35), 7230 (2005).CrossRefGoogle ScholarPubMed
Sharma, G., Varshney, J., Bidaye, A.C., and Chakravartty, J.K.: Grain growth characteristics and its effect on deformation behavior in nanocrystalline Ni. Mater. Sci. Eng., A 539, 324 (2012).CrossRefGoogle Scholar
Hibbard, G.D., McCrea, J.L., Palumbo, G., Aust, K.T., and Erb, U.: An initial analysis of mechanisms leading to late stage abnormal grain growth in nanocrystalline Ni. Scr. Mater. 47(2), 83 (2002).CrossRefGoogle Scholar
Iordache, M.C., Whang, S.H., Jiao, Z., and Wang, Z.M.: Grain growth kinetics in nanostructured nickel. Nanostruct. Mater. 11(8), 1343 (1999).CrossRefGoogle Scholar
Hibbard, G.D., Radmilovic, V., Aust, K.T., and Erb, U.: Grain boundary migration during abnormal grain growth in nanocrystalline Ni. Mater. Sci. Eng., A 494(1–2), 232 (2008).CrossRefGoogle Scholar
Natter, N., Schmelzer, M., and Hempelmann, R.: Nanocrystalline nickel and nickel-copper alloys: Synthesis, characterization, and thermal stability. J. Mater. Res. 13(5), 1186 (1998).CrossRefGoogle Scholar
Thuvander, M., Abraham, M., Cerezo, A., and Smith, G.D.W.: Thermal stability of electrodeposited nanocrystalline nickel and iron-nickel alloys. Mater. Sci. Technol. 17(8), 961 (2001).CrossRefGoogle Scholar
Li, H.Q. and Ebrahimi, F.: An investigation of thermal stability and microhardness of electrodeposited nanocrystalline nickel-21% iron alloys. Acta Mater. 51(13), 3905 (2003).CrossRefGoogle Scholar
Ebrahimi, F. and Li, H.: Grain growth in electrodeposited nanocrystalline fcc Ni-Fe alloys. Scr. Mater. 55(3), 263 (2006).CrossRefGoogle Scholar
Kobayashi, S. and Kashikura, Y.: Grain growth and mechanical properties of electrodeposited nanocrystalline nickel-4.4mass% phosphorus alloy. Mater. Sci. Eng., A 358(1–2), 76 (2003).CrossRefGoogle Scholar
Mehta, S.C., Smith, D.A., and Erb, U.: Study of grain growth in electrodeposited nanocrystalline nickel-1.2 wt.% phosphorus alloy. Mater. Sci. Eng., A 204(1–2), 227 (1995).CrossRefGoogle Scholar
Farber, R., Cadel, E., Menand, A., Schmitz, G., and Kirchheim, R.: Phosphorus segregation in nanocrystalline Ni-3.6 at.% P alloy investigated with the tomographic atom probe (TPA). Acta Mater. 48(3), 789 (2000).CrossRefGoogle Scholar
Hibbard, G.D., Aust, K.T., and Erb, U.: Thermal stability of electrodeposited nanocrystalline Ni-Co alloys. Mater. Sci. Eng., A 433(1–2), 195 (2006).CrossRefGoogle Scholar
Detor, A.J. and Schuh, C.A.: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22(11), 3222 (2007).CrossRefGoogle Scholar
Darling, K.A., VanLeeuwen, B.K., Semones, J.E., Koch, C.C., Scattergood, R.O., Kecskes, L.J., and Mathaudhu, S.N.: Stabilized nanocrystalline iron-based alloys: Guiding efforts in alloy selection. Mater. Sci. Eng., A 528(13–14), 4365 (2011).CrossRefGoogle Scholar
Atwater, M. and Darling, K.A.: A Visual Library of Stability in Binary Metallic Systems: The Stabilization of Nanocrystalline Grain Size by Solute Addition: Part 1. Army Research Laboratory; Aberdeen Proving Ground 20015, ARL-TR-6007, January 1, 2012.Google Scholar
Darling, K.A., Chan, R.N., Wong, P.Z., Semones, J.E., Scattergood, R.O., and Koch, C.C.: Grain-size stabilization in nanocrystalline Fe–Zr alloys. Scr. Mater. 59(5), 530 (2008).CrossRefGoogle Scholar
Darling, K.A., VanLeeuwen, B.K., Scattergood, R.O., and Koch, C.C.: Thermal stability of nanocrystalline Fe-Zr alloys. Mater. Sci. Eng., A 527(15), 3572 (2011).CrossRefGoogle Scholar
Koch, C.C., Scattergood, R.O., Darling, K.A., and Semones, J.E.: Stabilization of nanocrystalline grain sizes by solute additions. J. Mater. Sci. 43(23–24), 7264 (2008).CrossRefGoogle Scholar
Erb, U.: Electrodeposited nanocrystals: Synthesis, properties and industrial applications. Nanostruct. Mater. 6(5–8), 533 (1995).CrossRefGoogle Scholar
El-Sharik, A.M., Erb, U., Palumbo, G., and Aust, K.T.: Deviations from Hall-Petch behavior in as-prepared nanocrystalline nickel. Scr. Metall. Mater. 27(9), 1185 (1992).CrossRefGoogle Scholar
Hughes, G.D., Smith, S.D., Pande, C.S., Johnson, H.R., and Armstrong, R.W.: Hall-Petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel. Scr. Metall. 20(1), 93 (1986).CrossRefGoogle Scholar
Ebrahimi, F., Bourne, G.R., Kelly, M.S., and Matthews, T.E.: Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostruct. Mater. 11(3), 343 (1999).CrossRefGoogle Scholar
Schuh, C.A., Nieh, T.G., and Yamasaki, T.: Hall-Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel. Scr. Mater. 46(10), 735 (2002).CrossRefGoogle Scholar
Schuh, C.A., Nieh, T.G., and Iwasaki, H.: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51(2), 431 (2003).CrossRefGoogle Scholar
Volpp, T., Goring, E., Kuschke, W.M., and Arzt, E.: Grain size determination limits to Hall-Petch behavior in nanocrystalline Ni–Al powders. Nanostruct. Mater. 8(7), 855 (1997).CrossRefGoogle Scholar
Conrad, H. and Narayan, J.: Grain size softening in nanocrystalline materials. 42(11), 1025 (2000).Google Scholar
Schiøtz, J., Tolla, F.D.D., and Jacobsen, K.W.: Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561 (1998).CrossRefGoogle Scholar
Hahn, H., Mondal, P., and Padmanabhan, K.A.: Plastic deformation of naoncrystalline materials. Nanostruct. Mater. 9(1–8), 603 (1997).CrossRefGoogle Scholar
Schiotz, J., Vegge, T., Tolla, F.D.D, and Jacobsen, K.W.: Atomic scale simulations of the mechanical deformation of nanocrystalline metals. Phys. Rev. B. 60(17), 11971 (1999).CrossRefGoogle Scholar
Scattergood, R.O. and Koch, C.C.: A modified model for Hall-Petch behavior in nanocrystalline materials. Scr. Metall. Mater. 27(9), 1195 (1992).CrossRefGoogle Scholar
Lu, K. and Sui, M.L.: An explanation to the abnormal Hall-Petch relation in nanocrystalline materials. Scr. Metall. Mater. 28(12), 1465 (1993).CrossRefGoogle Scholar