Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T06:05:13.875Z Has data issue: false hasContentIssue false

Thermal stability, crystallization kinetics, and grain growth in an amorphous Al85Ce5Ni8Co2 alloy

Published online by Cambridge University Press:  31 January 2011

Á. Révész
Affiliation:
Department of Physics, Faculty of Sciences, Universitat Autònoma Barcelona, Edifici Cc, 08193 Bellaterra, Barcelona, Spain, and Department of General Physics, Eötvös University, H-1518 Budapest, P.O.B. 32, Hungary
L. K. Varga
Affiliation:
Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, H-1525 Budapest, P.O.B. 49, Hungary
S. Suriñach
Affiliation:
Department of Physics, Faculty of Sciences, Universitat Autònoma Barcelona, Edifici Cc, 08193 Bellaterra, Barcelona, Spain
M. D. Baró
Affiliation:
Department of Physics, Faculty of Sciences, Universitat Autònoma Barcelona, Edifici Cc, 08193 Bellaterra, Barcelona, Spain
Get access

Abstract

Thermal stability and crystallization kinetics of the melt-quenched amorphous Al85Ce5Ni8Co2 alloy were investigated by x-ray diffraction and differential scanning calorimetry (DSC). The glass transition was followed by a supercooled liquid region (21 °C) and then by a two-step crystallization process. The final microstructure contained Al3Ce, α–Al, Al3Ni, and Al9Co2 phases. Isothermal annealing of the as-quenched samples in the range of 275–285 °C showed that both crystallization reactions occurred through a nucleation and growth process. Continuous heating DSC measurements following pre-anneals for different times were also carried out to study the crystallization kinetics and the stability of the material. The Avrami analysis of the isothermal DSC-curves revealed that the 3-dimensional nucleation and growth process became more dominant with increasing annealing temperature. The average specific grain boundary energy corresponded to high-angle grain boundaries and indicated independent nucleation events.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Inoue, A., Ohtera, K., Tsai, A.P., and Masumoto, T., Jpn. J. Appl. Phys. 27, L289 (1988).Google Scholar
2.He, Y., Pooh, S.J., and Shiflet, G.J., Science 241, 1640 (1988).Google Scholar
3.Inoue, A., Ohtera, K., Tsai, A.P., and Masumoto, T., Jpn. J. Appl. Phys. 27, L479 (1988).CrossRefGoogle Scholar
4.Kim, W.T.. Gogebakan, M., and Cantor, B., Mater. Sci. Eng. A 226–228, 178 (1997).Google Scholar
5.Jiang, X.Y., Zhong, Z.C., and Greer, A.L., Philos. Mag. B 76, 419 (1997).CrossRefGoogle Scholar
6.Bassim, N., Kiminami, C.S., Kaufman, M.J., Oliveira, M.F., Perdigao, M.N.R.V., and Filho, W.J. Botta, Mater. Sci. Eng. A 304–306, 332 (2001).CrossRefGoogle Scholar
7.Yewondwossen, M., Dunlap, R.A., and Lloyd, D.J., J. Phys: Condens. Matter 4, 461 (1992).Google Scholar
8.Inoue, A., Kawamura, Y., Kimura, H.M., and Mano, H., Mater. Sci. Forum 360–362, 129 (2001).CrossRefGoogle Scholar
9.Révész, Á., Varga, L.K., Suriñach, S., and Baró, M.D. (unpublished).Google Scholar
10.Inoue, A., Nakazato, K., Kawamura, Y., Tsai, A.P., and Masumoto, T., Materials. Trans. JIM 35, 102 (1994).Google Scholar
11.Jiang, X.Y., Zhong, Z.C., and Greer, A.L., Mater. Sci. Eng. 226–228, 789 (1997).CrossRefGoogle Scholar
12.Tsai, A.P., Kamiyama, T., Kawamura, Y., Inoue, A., and Masumoto, T., Acta Mater. 45, 1477 (1997).CrossRefGoogle Scholar
13.Schumacher, P. and Greer, A.L., Mater. Mater. Sci. Eng. 226–228, 794 (1997).CrossRefGoogle Scholar
14.Inoue, A., Ohtera, K., Tsai, A.P., Kimura, H., and Masumoto, T., Jpn. J. Appl. Phys. 27, L1579 (1988).CrossRefGoogle Scholar
15.Kissinger, H.E., Anal. Chem. 29, 1702 (1957).Google Scholar
16.Marquardt, D.W., J. Soc. Ind. Appl. Math. 11, 431 (1963).CrossRefGoogle Scholar
17.Gich, M., Gloriant, T., Suriñach, S., Greer, A.L., and Baro, M.D.J. Non-Cryst. Solids 289, 214 (2001).CrossRefGoogle Scholar
18.Chen, L.C. and Spaepen, F., Nature 336, 366 (1988).CrossRefGoogle Scholar
19.Chen, L.C. and Spaepen, F., J. Appl. Phys. 69, 679 (1991).Google Scholar
20.Baró, M.D.. Suri ñ ach, S., Malagelada, J., Clavaguera-Mora, M.T., Gialanella, S., and Cahn, R.W., Acta Mater. Metall. 41, 1065 (1993).Google Scholar
21.Suriñach, S., Baró, M.D., Mora, M.T. Clavaguera, and Clavaguera, N., J. Non-Cryst. Solids 58, 209 (1983).Google Scholar
22.Avrami, M., J. Chem. Phys. 9, 177 (1941).CrossRefGoogle Scholar
23.Christian, J.W., The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon, Oxford, United Kingdom, 1975).Google Scholar
24.Zhong, Z.C., Jiang, X.Y., and Greer, A.L., Philos. Mag. B 76, 505 (1997).CrossRefGoogle Scholar
25.Gloriant, T., Ping, D.H., Hono, K., Greer, A.L., and Baro, M.D.Mater. Sci. Eng. A 304–306, 315 (2001).CrossRefGoogle Scholar
26.Atkinson, H.V., Acta Metall. 36, 469 (1988).CrossRefGoogle Scholar
27.Révész, Á., Lendvai, J., Cziráki, Á., Liebermann, H.H., and Bakonyi, I., J. Nanosci. Nanotech. 1, 191 (2001).CrossRefGoogle Scholar
28.Sutton, A.P. and Ballufi, K.W., Interfaces in Crystalline Materials (Clarendon Press, Oxford, United Kingdom, 1995).Google Scholar
29.Tschöpe, A. and Birringer, R., Acta Metall. Mater. 41, 2791 (1993).CrossRefGoogle Scholar
30.Révész, Á. and Lendvai, J., Nanostruct. Mater. 10, 13 (1998).CrossRefGoogle Scholar