Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T01:54:04.507Z Has data issue: false hasContentIssue false

Thermal annealing of amorphous Ti–Si–O thin films

Published online by Cambridge University Press:  31 January 2011

Abbas Hodroj*
Affiliation:
Laboratoire des Matériaux et du Génie Physique (CNRS—INP Grenoble), Minatec, Bâtiment INPG, 38016 Grenoble Cedex 1, France
Odette Chaix-Pluchery
Affiliation:
Laboratoire des Matériaux et du Génie Physique (CNRS—INP Grenoble), Minatec, Bâtiment INPG, 38016 Grenoble Cedex 1, France
Marc Audier
Affiliation:
Laboratoire des Matériaux et du Génie Physique (CNRS—INP Grenoble), Minatec, Bâtiment INPG, 38016 Grenoble Cedex 1, France
Ulrich Gottlieb
Affiliation:
Laboratoire des Matériaux et du Génie Physique (CNRS—INP Grenoble), Minatec, Bâtiment INPG, 38016 Grenoble Cedex 1, France
Jean-Luc Deschanvres
Affiliation:
Laboratoire des Matériaux et du Génie Physique (CNRS—INP Grenoble), Minatec, Bâtiment INPG, 38016 Grenoble Cedex 1, France
*
a)Address all correspondence to this author e-mail: [email protected]
Get access

Abstract

Ti–Si–O thin films were deposited using an aerosol chemical vapor deposition process at atmospheric pressure. The film structure and microstructure were analyzed using several techniques before and after thermal annealing. Diffraction results indicate that the films remain x-ray amorphous after annealing, whereas Fourier transform infrared spectroscopy gives evidence of a phase segregation between amorphous SiO2 and well-crystallized anatase TiO2. Crystallization of anatase TiO2 is also clearly shown in the Raman spectra. Transmission electron microscopy analysis indicates that anatase TiO2 nanograins are embedded in a SiO2 matrix in an alternated SiO2/TiO2 multilayer structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ouellette, M.F., Lang, R.V., Yan, K.L., Bertram, R.W., Owles, R.S.: Experimental studies of inhomogeneous coatings for optical applications. J. Vac. Sci. Technol., A 9, 1188 1991CrossRefGoogle Scholar
2Sorek, Y., Reisfeld, R., Finkelstein, I., Ruschin, S.: Sol-gel glass waveguides prepared at low temperature. Appl. Phys. Lett. 63, 3256 1993CrossRefGoogle Scholar
3Orignac, X., Barbier, D., Du, X.M., Almeida, R.M.: Fabrication and characterization of sol-gel planar waveguides doped with rare-earth ions. Appl. Phys. Lett. 69, 895 1996CrossRefGoogle Scholar
4Fabes, B.D., Birnie, D.P. III, Zelinski, B.J.J.: Porosity and composition effects in sol-gel derived interference filters. Thin Solid Films 245, 175 1995CrossRefGoogle Scholar
5Brassard, D., Sarkar, D.K., Khakani, M.A. El, Ouellet, L.: High-k titanium silicate thin films grown by reactive magnetron sputtering for complementary metal–oxide–semiconductor applications. J. Vac. Sci. Technol., A 22, 851 2004CrossRefGoogle Scholar
6Sankur, H., Gunning, W.: Crystallisation and diffusion in composite TiO2–SiO2 thin film. J. Appl. Phys. 66, 4747 1989CrossRefGoogle Scholar
7Giauque, P.H., Cherry, H.B., Nicolet, M.A.: Thermal stability of amorphous thin films: Ti3Si1O8 vs. TiO2 and mictamict compounds. Thin Solid Films 394, 136 2001CrossRefGoogle Scholar
8Sarkar, D.K., Desbiens, E., Khakani, M.A. El: High-k titanium silicate dielectric thin films grown by pulsed laser deposition. Appl. Phys. Lett. 80, 294 2002CrossRefGoogle Scholar
9Jiwei, Z., Xi, Y., Liangying, Z.: Characterization and optical propagation loss of sol-gel derived TiO2/SiO2 films. J. Phys. D: Appl. Phys. 33, 3013 2000CrossRefGoogle Scholar
10Langlet, M.: Handbook of Sol-Gel Science and Technology: Processing Characterization and Applications, edited by S. Sakka, Sol-Gel Processing, Vol. 1,, Kluwer Academic Publishers Norwell, MA, Dordrecht, The Netherlands 2005 331Google Scholar
11Song, C.F., , M.K., Yang, P., Xu, D., Yuan, D.R.: Structure and photoluminescence properties of sol-gel TiO2–SiO2 films. Thin Solid Films 413, 155 2002CrossRefGoogle Scholar
12Smith, R.C., Hoilien, N., Dykstra, C., Campbell, S.A., Roberts, J.T., Gladfelter, W.L.: CVD of TixSi1−xO2 films: Precursor chemistry impacts film composition. Chem. Vap. Deposition 9, 79 2003CrossRefGoogle Scholar
13Lee, S.M., Park, J.H., Hong, K.S., Cho, W.J., Kim, D.L.: The deposition behaviour of SiO2–TiO2 thin film by metalorganic chemical vapour deposition method. J. Vac. Sci. Technol., A 18, 2384 2000CrossRefGoogle Scholar
14Fang, Q., Meier, M., Yu, J.J., Wang, Z.M., Zhang, J-Y., Wu, J.X., Kenyon, A., Hoffmann, P., Boyd, I.W.: FTIR and XPS investigation of Er-doped SiO2–TiO2 films. Mater. Sci. Eng., B 105, 209 2003CrossRefGoogle Scholar
15Larouche, S., Szymanowski, H., Klemberg-Sapieha, J.E., Martinu, L., Gujrathi, S.C.: Microstructure of plasma-deposited SiO2/TiO2 optical films. J. Vac. Sci. Technol., A 22, 1200 2004CrossRefGoogle Scholar
16Hodroj, A., Deschanvres, J.L., Gottlieb, U. Growth of amorphous Ti–Si–O thin films by aerosol chemical vapor deposition process at atmospheric pressure.J. Electrochem. Soc.,155, D110 2008CrossRefGoogle Scholar
17Machida, M., Norimoto, K., Watanabe, T., Hashimoto, K., Fujishima, A.: The effect of SiO2 addition in super-hydrophilic property of TiO2 photocatalyst. J. Mater. Sci. 34, 2569 1999CrossRefGoogle Scholar
18Best, M.F., Condrate, R.A.: A Raman study of TiO2–SiO2 glasses prepared by sol-gel processes. J. Mater. Sci. Lett. 4, 994 1985CrossRefGoogle Scholar
19Labeau, M., Rey, P., Deschanvres, J.L., Joubert, J.C., Delabouglise, G.: Thin films of high-resistivity zinc oxide produced by a modified CVD method. Thin Solid Films 213, 94 1992CrossRefGoogle Scholar
20Hodroj, A., Roussel, H., Crisci, A., Robaut, F., Gottlieb, U., Deschanvres, J.L.: Density: Thickness and composition measurements of TiO2–SiO2 thin film by coupling x-ray reflectometry, ellipsometry and electron probe microanalysis. Appl. Surf. Sci. 253, 363 2006CrossRefGoogle Scholar
21Gonzalez, R.J., Zallen, R., Berger, H.: Infrared reflectivity and lattice fundamentals in anatase TiO2. Phys. Rev. B 55, 7014 1997CrossRefGoogle Scholar
22Busca, G., Ramis, G., Amores, J.M.G., Escribano, V.S., Piaggio, P.: FT Raman and FTIR studies of titanias and metatitanate powders. J. Chem. Soc., Faraday Trans. 90, 3181 1994CrossRefGoogle Scholar
23Sanders, D.M., Farabaugh, E.N., Haller, W.K.: Glassy optical coatings by multisource evaporation.Proc. SPIE-Int. Soc. Opt. Eng.,346, 31 1982CrossRefGoogle Scholar
24Chang, H., Huang, P.J.: Thermo-Raman studies on anatase and rutile. J. Raman Spectrosc. 29, 97 19983.0.CO;2-E>CrossRefGoogle Scholar
25Choi, H.C., Jung, Y.M., Kim, S.B.: Size effects in the Raman spectra of TiO2 nanoparticles. Vib. Spectrosc. 37, 33 2005CrossRefGoogle Scholar
26Kelly, S., Pollak, F.H., Tomkiewicz, M.: Raman spectroscopy as a morphological probe for TiO2 aerogels. J. Phys. Chem. B 101, 2730 1997CrossRefGoogle Scholar