Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T02:33:46.719Z Has data issue: false hasContentIssue false

Temperature and time dependence of phase formation of HgBa2Can−1CunO2(n+1)+δ superconductors

Published online by Cambridge University Press:  31 January 2011

Ayako Yamamoto*
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1–10–13 Shinonome, Koto-ku, Tokyo 135, Japan
Makoto Itoh
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1–10–13 Shinonome, Koto-ku, Tokyo 135, Japan
Atsushi Fukuoka
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1–10–13 Shinonome, Koto-ku, Tokyo 135, Japan
Seiji Adachi
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1–10–13 Shinonome, Koto-ku, Tokyo 135, Japan
Hisao Yamauchi
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1–10–13 Shinonome, Koto-ku, Tokyo 135, Japan
Keiichi Tanabe
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1–10–13 Shinonome, Koto-ku, Tokyo 135, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We systematically studied the temperature and time dependence of phase formation of HgBa2Can−1CunO2(n+1)+δ [Hg-12(n − 1)n, n = 1, 2, 3, 4] superconductors by a single step firing method. All samples were synthesized from high-purity HgO, BaO, CaO, and CuO in a sealed quartz tube. The phase formation of Hg-12(n − 1)n was examined by both x-ray diffraction (XRD) analysis and dc susceptibility measurement. A single-phase HgBa2CuO4+δ (Hg-1201) was obtained in a relatively wide temperature range (600–850 °C), while single-phase HgBa2CaCu2O6+8 (Hg-1212) and HgBa2Ca2Cu3O8+δ (Hg-1223) were obtained only in narrow temperature and time ranges for the synthesis. The optimum temperatures for Hg-1212 and Hg-1223 were found to be 665 and 710 °C, respectively, when the sintering time was fixed for about 50 h. The HgBa2Ca3Cu4O10+δ (Hg-1234) phase was obtained as a mixture with Hg-1223.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Putilin, S.N., Antipov, E.V., Chmaissem, O., and Marezio, M., Nature (London) 362, 226 1993).CrossRefGoogle Scholar
2.Schilling, A., Cantoni, M., Guo, J.D., and Ott, H. R., Nature (London) 363, 56 (1993).CrossRefGoogle Scholar
3.Radaelli, P.G., Wagner, J. L., Hunter, B.A., Beno, M.A., Knapp, G.S., Jorgensen, J. D., and Hinks, D.G., Physica C 216, 29 (1993).CrossRefGoogle Scholar
4.Chu, C.W., Gao, L., Chen, F., Huang, J.Z., Meng, R.L., and Xue, Y.Y., Nature (London) 365, 323 (1993).CrossRefGoogle Scholar
5.Morosin, B., Venturini, E. L., Schirber, J.E., and Newcomer, P. P., Physica C 226, 175 (1994).CrossRefGoogle Scholar
6.Fukuoka, A., Tokiwa-Yamamoto, A., Itoh, M., Usami, R., Adachi, S., Yamauchi, H., and Tanabe, K., Physica C 265, 13 (1996).CrossRefGoogle Scholar
7.Fukuoka, A., Tokiwa-Yamamoto, A., Itoh, M., Usami, R., Adachi, S., and Tanabe, K., Phys. Rev. B 55, 6612 (1997).CrossRefGoogle Scholar
8.Chmaissem, O., Wessels, L., and Sheng, Z. Z., Physica 230, 231 (1994).CrossRefGoogle Scholar
9.Lin, Q.M., He, Z.H., Sun, X. X., Gao, L., Xue, Y.Y., and Chu, C. W., Physica C 254, 207 (1995).CrossRefGoogle Scholar
10.Tokiwa-Yamamoto, A., Isawa, K., Itoh, M., Adachi, S., and Yamauchi, H., Physica C 216, 250 (1993).CrossRefGoogle Scholar
11.Paranthaman, M., Physica C 222, 7 (1994).CrossRefGoogle Scholar
12.Shao, H. M., Shen, L. J., Shen, J. C., Hua, X. Y., Yuan, P. F., and Yao, X. X., Physica C 232, 5 (1994).CrossRefGoogle Scholar
13.Meng, R. L., Beauvais, L., Zhang, X. N., Huang, J. Z., Sun, Y. Y., Xue, Y. Y., and Chu, C. W., Physica C 216, 21 (1993).CrossRefGoogle Scholar
14.Usami, R., Adachi, S., Itoh, M., Tokiwa-Yamamoto, A., and Tanabe, K., Physica C 262, 21 (1996).CrossRefGoogle Scholar
15.Antipov, E. V., Loureiro, S. M., Chaillout, C., Capponi, J. J., Bordet, P., Tholence, J. L., Putilin, S. N., and Marezio, M., Physica C 215, 1 (1993).CrossRefGoogle Scholar
16.Moriwaki, Y., Tatsuki, T., Tokiwa-Yamamoto, A., Tamura, T., Adachi, S., and Tanabe, K., J. Mater. Sci. Lett. 16, 115 (1997).CrossRefGoogle Scholar
17.Tokiwa-Yamamoto, A., Fukuoka, A., Itoh, M., Adachi, S., and Yamauchi, H., Extended Abstract of MRS-ISTEC Joint Workshop on Superconductivity ′95, Hawaii.Google Scholar
18.Loureiro, S. M., Capponi, J. J., Antipov, E. V., and Marezio, M., Studies of High-temperature Superconductors, edited by Narlikar, A. (Nova Science Publisher, Commack, NY), Vol. 25, Chap. 6.Google Scholar
19.Alyoshin, V. A., Mikhailova, D. A., and Antipov, E. V., Physica C 271, 197 (1996).CrossRefGoogle Scholar
20.Tsuchiya, T. and Fueki, K., Physica C 288, 47 (1997).CrossRefGoogle Scholar
21.Tokiwa-Yamamoto, A., Fukuoka, A., Itoh, M., Adachi, S., Yamauchi, H., and Tanabe, K., Physica C 269, 54 (1996).CrossRefGoogle Scholar
22.Maeda, A., Hase, M., Tsukada, I., Noda, K., Takebayashi, S., and Uchinokura, K., Phys. Rev. B 41, 6418 (1990).CrossRefGoogle Scholar
23.Nakajima, S., Kikuchi, M., Syono, Y., Oku, T., Shindo, D., Hiraga, K., Kobayashi, N., Iwasaki, H., and Muto, Y., Physica C 158, 471 (1989).CrossRefGoogle Scholar