Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T00:42:33.364Z Has data issue: false hasContentIssue false

System Bi–Sr–O: Synergistic measurements of thermodynamic properties using oxide and fluoride solid electrolytes

Published online by Cambridge University Press:  31 January 2011

K. T. Jacob
Affiliation:
Materials Research Centre and Department of Metallurgy, Indian Institute of Science, Bangalore 560 012, India
K. P. Jayadevan
Affiliation:
Materials Research Centre and Department of Metallurgy, Indian Institute of Science, Bangalore 560 012, India
Get access

Extract

Phase equilibrium and electrochemical studies of the ternary system Bi–Sr–O indicate the presence of six ternary oxides (Bi2SrO4, Bi2Sr2O5, Bi2Sr3O6, Bi4Sr6O15, Bi14Sr24O52, and Bi2Sr6O11) and three solid solutions (δ, β, and γ). An isothermal section of the phase diagram is established at 1050 K by phase analysis of quenched samples. Three compounds, Bi4Sr6O15, Bi14Sr24O52, and Bi2Sr6O11, contain Bi5+ ions. The stability of these phases is a function of oxygen partial pressure. The chemical potentials of SrO in two-phase fields are determined as a function of temperature using solid-state cells based on single crystal SrF2 as the electrolyte. Measurement of the emf of cells based on SrF2 as a function of oxygen partial pressure in the gas at constant temperature gives information on oxygen content of the compounds present at the electrodes. The chemical potentials of Bi2O3 in two-phase fields of the pseudobinary Bi2O3–SrO are measured using cells incorporating (Y2O3)ZrO2 as the solid electrolyte. The standard free energies of formation of the ternary oxides are calculated independently using emfs of different cells. The independent assessments agree closely; the maximum difference in the value of of component binary oxides. The results are discussed in the light of the phase diagram and compared with calorimetric and chemical potential measurements reported in the literature. The combined use of emf data from cells incorporating fluoride and oxide electrolytes enhances the reliability of derived data.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Guillermo, R., Conflant, P., Boivin, J. C., and Thomas, D., Rev. Chim. Mineral. 15, 153 (1978).Google Scholar
2.Conflant, P., Drache, M., Wignacourt, J. P., and Boivin, J. C., Mater. Res. Bull. 26, 1219 (1991).CrossRefGoogle Scholar
3.Levin, E. M. and Roth, R. S., J. Res. Nat. Bur. Stand., Sec. A 68, 197 (1964).CrossRefGoogle Scholar
4.Roth, R. S., Rawn, C. J., Burton, B. P., and Beech, F., J. Res. Natl. Inst. Stand. Technol. 95, 291 (1990).CrossRefGoogle Scholar
5.Hwang, N. M., Roth, R. S., and Rawn, C. J., J. Am. Ceram. Soc. 73, 2531 (1990).CrossRefGoogle Scholar
6.Vstavskaya, E.Yu., Zuev, A.Yu., Chereponov, V. A., Sutton, S. D., and Abell, J. S., J. Phase Equil. 15, 573 (1994).CrossRefGoogle Scholar
7.Abbattista, F., Brisi, C., Mazza, D., and Vallino, M., Mater. Res. Bull. 26, 107 (1991).CrossRefGoogle Scholar
8.Jacob, K. T. and Mathews, T., J. Mater. Chem. 1, 545 (1991).CrossRefGoogle Scholar
9.Slobodin, B. V., Ostapenko, I. A., and Fotiev, A. A., Inorg. Mater. 27, 2220 (1992).Google Scholar
10.Jacob, K. T. and Jayadevan, K. P., Mater. Trans. JIM 38, 427 (1997).CrossRefGoogle Scholar
11.Takahashi, T., Iwahara, H. I., and Nagai, Y., J. Appl. Electrochem. 2, 97 (1972).CrossRefGoogle Scholar
12.Zinkevich, M. V., Prodan, S. A., Zonor, Yu.G., and Vashuk, V. V., Inorg. Mater. 31, 129 (1995).Google Scholar
13.Mathews, T., Ph.D. Thesis, Department of Metallurgy, Indian Institute of Science, Bangalore, India (1993).Google Scholar
14.Harwig, H. A., Z. Anorg. Allg. Chem. 444, 151 (1978).CrossRefGoogle Scholar
15.Taylor, D., Trans. J. British Ceram. Soc. 83, 5 (1978).Google Scholar
16.Range, K. J., Rau, F., Schiessl, U., and Klement, U., Z. Anorg. Allg. Chem. 620, 879 (1994).CrossRefGoogle Scholar
17.Eisenmann, B. and Deller, K., Z. Naturforsch 30B, 66 (1975).CrossRefGoogle Scholar
18.Mercurio, D., Mesjard, J. C. C., Frit, B., Conflant, P., Boivin, J. C., and Vogt, T., J. Solid State Chem. 112, 1 (1994).CrossRefGoogle Scholar
19.Withers, R. L. and Rossel, H., J. Solid State Chem. 118, 66 (1995).CrossRefGoogle Scholar
20.Haemers, T. A. M. and Ijdo, D. J. W., Mater. Res. Bull. 26, 989 (1991).CrossRefGoogle Scholar
21.Torardi, C. C., Parise, J. B., Santoro, A., Rawn, C. J., Roth, R. S., and Burton, B. P., J. Solid State Chem. 93, 228 (1991).CrossRefGoogle Scholar
22.Conflant, P. and Boivin, J. C., C. R. Acad. Sci., Ser. C., Sci. Chim. 288, 161 (1979).Google Scholar
23.Vente, J. F., Helmholdt, R. B., and Ijdo, D. J. W., Acta Crystallogr. C48, 1380 (1992).Google Scholar
24.Bokhimi, and Portilla, M., J. Solid State Chem. 105, 371 (1993).CrossRefGoogle Scholar
25.Conflant, P., Drache, M., Lagrenee, M., Boivin, J. C., and Wignacourt, J. P., Solid State Ionics 53–56, 592 (1992).CrossRefGoogle Scholar
26.Ikeda, Y., Ito, H., Shimomura, S., One, Y., Inaba, K., Hiroi, Z., and Takano, M., Physica C 159, 93 (1989).CrossRefGoogle Scholar
27.Baek, H. D. and Virkar, A. V., J. Electrochem. Soc. 139, 3174 (1992).CrossRefGoogle Scholar
28.Idemoto, Y., Shizuka, K., Yasuda, Y., and Fueki, K., Physica C 211, 36 (1993).CrossRefGoogle Scholar
29.Horyn, R., Wolcyrz, M., and Andruszkiewicz, R., J. Alloys Compounds 191, 203 (1993).CrossRefGoogle Scholar
30.Jacob, K. T. and Mathews, T., J. Am. Ceram. Soc. 75, 3225 (1992).CrossRefGoogle Scholar
31.Mathews, T., Hajra, J. P., and Jacob, K. T., Chem. Mater. 5, 1669 (1993).CrossRefGoogle Scholar
32.Chase, M. W. Jr., Davies, C. A., Downey, J. R. Jr., Fruip, D. J., McDonald, R. A., and Syverud, A. N., Janaf Thermochemical Tables, 3rd ed. J. Phys. Chem. Ref. Data 14, Supplements 1 and 2 (1985).Google Scholar