Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T12:19:23.507Z Has data issue: false hasContentIssue false

Synthesis of submicrocrystalline TiCx–Al2O3 composites by mechanically-activated pressure-assisted self-propagating high-temperature synthesis technique

Published online by Cambridge University Press:  31 January 2011

V. Gauthier*
Affiliation:
Laboratoire de Métallurgie Physique [UMR 6630 Centre National de la Recherche Scientifique (CNRS)], 86962 Futuroscope-Chasseneuil du Poitou, France
A.V. Khitev
Affiliation:
Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432 Russia
V.A. Shcherbakov
Affiliation:
Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432 Russia
M.F. Beaufort
Affiliation:
Laboratoire de Métallurgie Physique [UMR 6630 Centre National de la Recherche Scientifique (CNRS)], 86962 Futuroscope-Chasseneuil du Poitou, France
P. Villechaise
Affiliation:
Laboratoire de Mécanique et de Physique des Matériaux [UMR 6617 Centre National de la Recherche Scientifique (CNRS)], Ecole Nationale Supérieure de Mécanique et d’Aérotechnique (ENSMA), 86961 Futuroscope-Chasseneuil du Poitou, France
S. Dubois
Affiliation:
Laboratoire de Métallurgie Physique [UMR 6630 Centre National de la Recherche Scientifique (CNRS)], 86962 Futuroscope-Chasseneuil du Poitou, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

TiCx–Al2O3 composites have been synthesized by pressure-assisted combustion synthesis of (Ti + C + Al2O3) reactant powder. Different alumina contents (10–40 vol%) have been investigated to study the dilution effect on TiC microstructure. A mechanical method and a mixed chemical/mechanical method have been used to obtain (Ti + C + Al2O3) powder mixtures with different alumina distributions. Scanning electron microscopy (SEM) observations of these mixtures show that alumina is distributed inside micrometric (Ti + C) aggregates for the first method whereas alumina is located around (Ti + C) aggregates for the second one. X-ray diffraction (XRD) and SEM analyses of the composites indicate that TiCx is substoichiometric in carbon and mainly consists of submicrometric grains. A distribution of Al2O3 inside (Ti + C) aggregates is more efficient to reduce TiC grain size. For the 40 vol% Al2O3 diluted (Ti + C) mixture prepared from the mechanical route, TiCx nanocrystallites have been successfully stabilized, which demonstrates that the addition of Al2O3 diluent in a (Ti + C) mixture can be efficiently used to inhibit grain growth.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Merzhanov, A.G.: Twenty years of search and findings in Combustion and Plasma, Synthesis of High-Temperature Materials edited by Z.A. Munir, J.B. Holt VCH Publications Inc. New York 1990Google Scholar
2Merzhanov, A.G.: Combustion processes that synthesize materials. J. Mater. Process. Technol. 56, 222 1996Google Scholar
3Siegel, R.W.Fougere, G.E.: Mechanical properties of nanophase metal. Nanostruct. Mater. 6, 205 1995CrossRefGoogle Scholar
4Gleiter, H.: Nanostructured materials: Basic concepts and microstructure. Acta Mater. 48(1-4), 1 2000Google Scholar
5Andrievski, R.A.Glezer, A.M.: Size effects in properties of nanomaterials. Scripta Mater. 44(8–9), 1621 2001Google Scholar
6Selvan, R.K., Augustin, C.O., Berchmans, L.J.Saraswathi, R.: Combustion synthesis of CuFe2O4. Mater. Res. Bull. 38(1), 41 2003CrossRefGoogle Scholar
7Deshpande, K., Mukasyan, A.Varma, A.: Aqueous combustion synthesis of strontium-doped lanthanum chromite ceramics. J. Am. Ceram. Soc. 86(7), 1149 2003Google Scholar
8Lin, W., Bai, X.D., Ling, Y.H., Yang, J.L.Ma, W.J.: The study of combustion synthesis of fine-particle γ-lithium aluminate. J. Mater. Sci. 38(18), 3883 2003CrossRefGoogle Scholar
9Zanetti, S.M., Santiago, E.I., Bulhoes, L.O.S., Varela, J.A., Leite, E.R.Longo, E.: Preparation and characterization of nanosized SrBi2Nb2O9 powder by the combustion synthesis. Mater. Lett. 57(19), 2812 2003CrossRefGoogle Scholar
10Charlot, F., Bernard, F., Gaffet, E., Klein, D.Niepce, J.C.: In situ time-resolved diffraction coupled with a thermal IR camera to study mechanically activated SHS reaction: Case of Fe-Al binary system. Acta Mater. 47(2), 619 1999CrossRefGoogle Scholar
11Gras, Ch., Vrel, D., Gaffet, E.Bernard, F.: Mechanical activation effect on the self-sustaining combustion reaction in the Mo-Si system. J. Alloys Compd. 314, 240 2001Google Scholar
12Gauthier, V., Bernard, F., Gaffet, E., Vrel, D., Gailhanou, M.Larpin, J.P.: Investigations of the formation mechanism of nanostructured NbAl3 via MASHS reaction. Intermetallics 10(4), 377 2002Google Scholar
13Orthner, H.R., Tomasi, R.Botta, W.J.: Reaction sintering of titanium carbide and titanium silicide prepared by high-energy milling. Mater. Sci. Eng., A 336(1–2), 202 2002CrossRefGoogle Scholar
14Sannia, M., Orru, R., Garay, J.E., Cao, G.Munir, Z.A.: Effect of phase transformation during high-energy milling on field activated synthesis of dense MoSi2. Mater. Sci. Eng., A 345(1–2), 270 2003CrossRefGoogle Scholar
15Dubois, S., Karnatak, N., Beaufort, M.F., Bourdarias, L., Renault, P.O.Vrel, D.: Influence of the mechanical activation on the TiC self-propagating high-temperature synthesis. Mater. Tech. 18(3), 158 2003CrossRefGoogle Scholar
16Nersisyan, H.H., Lee, J.H.Won, C.W.: Combustion of TiO2–Mg and TiO2–Mg–C systems in the presence of NaCl to synthesize nanocrystalline Ti and TiC powders. Mater. Res. Bull. 38(7), 1135 2002CrossRefGoogle Scholar
17Nersisyan, H.H., Lee, J.H.Won, C.W.: Self-propagating high-temperature synthesis of nano-sized titanium carbide powder. J. Mater. Res. 17(11), 2859 2002CrossRefGoogle Scholar
18Cochepin, B.: Self-propagating high-temperature TiC synthesis: Nucleation, growth and stabilization of nanostructures. Ph.D. Thesis. Université de Poitiers (France), November 2005Google Scholar
19Dunmead, S.D., Readey, D.W., Semler, C.E.Holt, J.B.: Kinetics of combustion synthesis in the Ti-C and Ti-C-Ni systems. J. Am. Ceram. Soc. 72(12), 2318 1989CrossRefGoogle Scholar
20Dubois, S., Karnatak, N., Beaufort, M.F.Vrel, D.: Experimental evidence of the emptying core mechanism during combustion synthesis of TiC performed under isostatic gas pressure. J. Mater. Synth. Process. 9(5), 253 2001CrossRefGoogle Scholar
21Kirdyashkin, A.I., Maksimov, Y.M.Nekrasov, E.A.: Titanium-carbon interaction mechanism in a combustion wave. Combust. Explos. Shock Waves 12, 377 1981Google Scholar
22Holt, J.B.Munir, Z.A.: Combustion synthesis of titanium carbide: Theory and experiment. J. Mater. Sci. 21, 251 1986Google Scholar
23Heian, E.M., Karnatak, N., Vrel, D., Beaufort, M.F.Dubois, S.: Effect of nanostructured reactants on TiC combustion synthesis and microstructure. Int. J. SHS 13(1), 1 2004Google Scholar
24Cochepin, B., Gauthier, V., Beaufort, M.F., Vrel, D., Bonnet, J.P.Dubois, S.: Nanocrystalline TiC combustion-synthesized from nanostructured reactants and TiC diluent. Int. J. SHS 14(2), 87 2005Google Scholar
25Williamson, G.K.Hall, W.H.: X-ray line broadening from filed aluminum and wolfram. Acta Metall. 1, 22 1953Google Scholar
26Pastor, H.: Titanium-carbonitride-based hard alloys for cutting tools. Mater. Sci. Eng., A 105(106), 401 1988Google Scholar
27Shaffer, P.T.B.: Materials Index, N°1 Plenum Press New-York 1964Google Scholar
28Zhang, S.: Titanium carbonitride-based cermets: process and properties. Mater. Sci. Eng., A 163, 141 1993Google Scholar
29Toth, L.E.: Transition Metals Carbides and Nitrides Academic Press London, UK 1967Google Scholar
30Uematsu, K., Kieda, N., Sakurai, O., Mizutani, N., Kato, M.: Sintering and mechanical properties of non-stoichiometric titanium carbide. J. Ceram. Soc. Jpn. 91(11), 487 1983Google Scholar