Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T15:14:34.708Z Has data issue: false hasContentIssue false

Synthesis of SnO2 nanoparticles for formaldehyde detection with high sensitivity and good selectivity

Published online by Cambridge University Press:  20 July 2020

Liping Gao*
Affiliation:
School of Materials and Chemical Engineering, Chuzhou University, Chuzhou239000, China
Hao Fu
Affiliation:
Department of Science and Technology, Shiyuan College of Nanning Normal University, Nanning530226, China School of Marine Sciences, Guangxi University, Nanning530004, China
Jiejun Zhu
Affiliation:
School of Materials and Chemical Engineering, Chuzhou University, Chuzhou239000, China
Junhai Wang
Affiliation:
School of Materials and Chemical Engineering, Chuzhou University, Chuzhou239000, China
Yuping Chen
Affiliation:
School of Materials and Chemical Engineering, Chuzhou University, Chuzhou239000, China
Hongjie Liu*
Affiliation:
Department of Science and Technology, Shiyuan College of Nanning Normal University, Nanning530226, China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

During the detection of industrial hazardous gases, like formaldehyde (HCHO), the selectivity is still a challenging issue. Herein, an alternative HCHO chemosensor that based on the tin oxide nanoparticles is proposed, which was obtained through a facile hydrothermal method. Gas sensing performances showed that the optimal working temperature located at only 180 °C, the response value of 79 via 50 ppm HCHO was much higher than that of 35 at 230 °C. However, the compromised test temperature was selected as 230 °C, taking into account the faster response/recovery speeds than 180 °C, named 20/23versus 53/60 s, respectively. The response (35) of the SnO2 nanoparticles-based sensor to 50 ppm of HCHO is about 400% higher than that of bulk SnO2 sensor (9), especially when the gas concentration is 1 ppm, SnO2 nanoparticles also has a higher sensitivity which may possibly result from more exposed active sites and small size effect for nanoparticles than for bulk ones. The gas sensor based on SnO2 nanoparticles can be utilized as a promising candidate for practical low-temperature detectors of HCHO due to its higher gas response, excellent response–recovery properties, and perfect selectivity.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

c)

These authors contributed equally to this work.

References

Li, N., Xiang, Q., Cheng, Z.X., Wang, X.H., and Xu, J.Q.: Synthesis of porous SnO2 hollow sphere materials and gas sensing properties of formaldehyde. J. Zhengzhou Univ. 40, 2731 (2019).Google Scholar
Chen, H., Sun, L., Li, G.D., and Zou, X.X.: Well-tuned surface oxygen chemistry of cation off-stoichiometric spinel oxides for highly selective and sensitive formaldehyde detection. Chem. Mater. 30, 20182027 (2018).CrossRefGoogle Scholar
Zhang, Z.: Gas-sensing properties and in situ diffuse reflectance infrared Fourier transform spectroscopy study of formaldehyde adsorption and reactions on SnO2 films. J. Mater. Res. 29, 139147 (2013).CrossRefGoogle Scholar
Gu, C.P., Guan, W.M., Liu, X.S., Gao, L.L., Wang, L.Y., Shim, J.J., and Huang, J.R.: Controlled synthesis of porous Ni-doped SnO2 microstructures and their enhanced gas sensing properties. J. Alloy Compd. 692, 855864 (2017).CrossRefGoogle Scholar
Guntner, A.T., Koren, V., Chikkadi, K., Righettoni, M., and Pratsinis, S.E.: E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer? ACS Sens. 1, 528535 (2016).CrossRefGoogle Scholar
Kannan, P.K.: An impedance sensor for the detection of formaldehyde vapor using ZnO nanoparticles. J. Mater. Res. 32, 28002809 (2017).CrossRefGoogle Scholar
Jiang, X.G., Li, C.Y., Chi, Y., and Yan, J.H.: TG–FTIR study on urea–formaldehyde resin residue during pyrolysis and combustion. J. Hazard. Mater. 173, 205210 (2010).CrossRefGoogle Scholar
Mohimann, G.R.: Formaldehyde detection in air by laser induced fluorescence. Appl. Spectrosc. 39, 98101 (1985).CrossRefGoogle Scholar
Chung, P.R., Tzeng, C.T., Ke, M.T., and Lee, C.Y.: Formaldehyde gas sensors: A review. Sensors 13, 44684484 (2013).CrossRefGoogle ScholarPubMed
Mann, B. and Grajeski, M.L.: New chemiluminescent derivatizing agent for the analysis of aldehyde and ketones by high-performance liquid chromatography with peroxioxalate chemiluminescence. J. Chromatogr. 386, 149158 (1987).CrossRefGoogle Scholar
Norkus, E., Vaskelis, A., and Pauliukaite, R.: Polarographic determination of formaldehyde according to the anodic oxidation wave in alkaline solutions. Electroanalysis 1, 14471449 (1999).Google Scholar
Liu, C., Cheng, A.W., Xia, X.K., Liu, Y.F., He, S.W., Guo, X., and Ji, Y.S.: Development of a facile and sensitive fluorometric derivatization reagent for detecting formaldehyde. Anal. Methods 8, 27642770 (2016).CrossRefGoogle Scholar
Zhang, L.X., Zhao, J.H., Zheng, J.F., Li, L., and Zhu, Z.P.: Shuttle-like ZnO nano/microrods: Facile synthesis, optical characterization and high formaldehyde sensing properties. Appl. Surf. Sci. 258, 711718 (2011).CrossRefGoogle Scholar
Wang, L.: Polymer g-C3N4 wrapping bundle-like ZnO nanorod heterostructures with enhanced gas sensing properties. J. Mater. Res. 4, 23 (2018).Google Scholar
Lin, Y., Wei, W., Li, Y.J., Li, F., Zhou, J.R., Sun, D.M., Chen, Y., and Ruan, S.P.: Preparation of Pd nanoparticle-decorated hollow SnO2 nanofibers and their enhanced formaldehyde sensing properties. J. Alloys Compd. 651, 690698 (2015).CrossRefGoogle Scholar
Wang, S.M., Chao, J., Cui, W., Fan, L.L., Li, X.F., and Li, D.J.: Oxygen vacancies and grain boundaries potential barriers modulation facilitated formaldehyde gas sensing performances for In2O3 hierarchical architectures. Sens. Actuat. B 255, 159165 (2018).CrossRefGoogle Scholar
Kim, S.P., Choi, M.Y., and Choi, H.C.: Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation. Mater. Res. Bull. 74, 8589 (2016).CrossRefGoogle Scholar
Jiang, Q., Zhang, X.W., and You, J.B.: SnO2: A wonderful electron transport layer for perovskite solar cells. Small 14, 1801154 (2018).CrossRefGoogle Scholar
Li, B.J., Yang, G.Y., Huang, L.J., Zu, W., and Ren, N.F.: Performance optimization of SnO2: F thin films under quasi-vacuum laser annealing with covering a transparent PET sheet: A study using processing map. Appl. Surf. Sci. 509, 145334 (2020).CrossRefGoogle Scholar
Phuoc, P.H., Huang, C.M., Toan, N.V., Duy, N.V., Hoa, N.D., and Hieu, N.V.: One-step fabrication of SnO2 porous nanofiber gas sensors for sub-ppm H2S detection. Sens. Actuat. A 303, 111722 (2020).CrossRefGoogle Scholar
Sun, P., Cao, Y., Liu, J., Sun, Y.F., Ma, J., and Lu, G.Y.: Dispersive SnO2 nanosheets: Hydrothermal synthesis and gas sensing properties. Sens. Actuat. B 156, 779783 (2011).CrossRefGoogle Scholar
Gao, F., Qin, G.H., Li, Y.H., Jiang, Q.P., Luo, L., Zhao, K., Liu, Y.J., and Zhao, H.Y.: One-pot synthesis of La-doped SnO2 layered nanoarrays with an enhanced gas sensing performance toward acetone. RSC Adv. 6, 1029810310 (2016).CrossRefGoogle Scholar
Ang, G.T., Toh, G.H., Bakar, M.Z.A., Abdullah, A.Z., and Othman, M.R.: High sensitivity and fast response SnO2 and La-SnO2 catalytic pellet sensors in detecting volatile organic compounds. Process Saf. Environ. Prot. 89, 186192 (2011).CrossRefGoogle Scholar
Xu, J.Q., Wang, D., Qin, L.P., Yu, W.J., and Pan, Q.Y.: SnO2 nanorods and hollow spheres: Controlled synthesis and gas sensing properties. Sens. Actuat. B 137, 490495 (2009).CrossRefGoogle Scholar
Abideen, Z.U., Kim, J.-H., and Kim, S.S.: Optimization of metal nanoparticle amount on SnO2 nanowires to achieve superior gas sensing properties. Sens. Actuat. B 238, 374380 (2017).CrossRefGoogle Scholar
Zeng, Y., Wang, Y.Z., Qiao, L., Bing, Y.F., Zou, B., and Zeng, W.T.: Synthesis and the improved sensing properties of hierarchical SnO2 hollow nanosheets with mesoporous and multilayered interiors. Sens. Actuat. B 222, 354361 (2016).CrossRefGoogle Scholar
Li, G., Cheng, Z., Xiang, Q., Yan, L., Wang, X., and Xu, J.: Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sens. Actuat. B 283, 590601 (2019).CrossRefGoogle Scholar
Wang, Q., Yao, N., An, D.M., Li, Y., Zou, Y.L., Lian, X.X., and Tong, X.X.: Enhanced gas sensing properties of hierarchical SnO2 nanoflower assembled from nanorods via a one-pot template-free hydrothermal method. Ceram. Int. 42, 1588915896 (2016).CrossRefGoogle Scholar
Hu, J., Li, X., Wang, X., Li, Y., Li, Q., and Wang, F.: Hierarchical aloe-like SnO2 nanoflowers and their gas sensing properties. J. Mater. Res. 33, 14331441 (2018).CrossRefGoogle Scholar
Zhang, C.L., Wang, J., Hu, R.J., Qiao, Q., and Li, X.G.: Synthesis and gas sensing properties of porous hierarchical SnO2 by grapefruit exocarp biotemplate. Sens. Actuat. B 222, 11341143 (2016).CrossRefGoogle Scholar
Li, Y.X., Chen, N., Deng, D.Y., Xing, X.X., Xiao, X.C., and Wang, Y.D.: Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Sens. Actuat. B 238, 264273 (2017).CrossRefGoogle Scholar
Li, H., Zhu, D., and Yang, Z.: Synthesis and properties of SnO2 aerogels via ambient pressure drying of sol–gel. J. Mater. Res. 33, 41924198 (2018).CrossRefGoogle Scholar
Cui, Y., Zhang, M., Li, X., Wang, B., and Wang, R.: Investigation on synthesis and excellent gas-sensing properties of hierarchical Au-loaded SnO2 nanoflowers. J. Mater. Res. 34, 29442954 (2019).CrossRefGoogle Scholar
Luo, S.H., Fan, J.Y., Liu, W.L., Zhang, M., Song, Z.T., Liu, C.L., Wu, X.L., and Chu, P.: Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts. Nanotechnology 17, 16951699 (2006).CrossRefGoogle ScholarPubMed
Xiao, M., Zhang, L., Luo, B., Lyu, M., Wang, Z., Huang, H., Wang, S., Du, A., and Wang, L.: Molten-salt-mediated synthesis of an atomic nickel Co-catalyst on TiO2 for improved photocatalytic H2 evolution. Angew. Chem. Int. Ed. 59, 72307236 (2020).CrossRefGoogle ScholarPubMed
Fang, Y., Liu, Z., Han, J., Jin, Z., Han, Y., Wang, F., Niu, Y., Wu, Y., and Xu, Y.: High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2 in situ grown on Ti3C2Tx MXene. Adv. Energy Mater. 9, 19 (2019).CrossRefGoogle Scholar
Gong, F., Liu, M., Gong, L., Li, D., Li, Y., and Li, F.: SnO2 nano-mulberries anchored onto RGO nanosheets for lithium ion batteries. J. Mater. Res. 35, 2030 (2019).CrossRefGoogle Scholar
Zhang, Y., Xu, J.Q., Xiang, Q., Li, H., Pan, Q.Y., and Xu, P.C.: Brush-Like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas sensor properties. J. Phys. Chem. C 113, 4303435 (2009).Google Scholar
Li, H., Xie, W.Y., Liu, B., Wang, Y.R., Xiao, S.H., Duan, X.C., Li, Q.H., and Wang, T.H.: Ultra-fast and highly-sensitive gas sensing arising from thin SnO2 inner wall supported hierarchical bilayer oxide hollow spheres. Sens. Actuat. B 240, 349357 (2017).CrossRefGoogle Scholar
Chen, H., Hu, J., Li, G.D., Gao, Q., Wei, C., and Zou, X.: Porous Ga-In bimetallic oxide nanofibers with controllable structures for ultrasensitive and selective detection of formaldehyde. ACS Appl. Mater. Interfaces 9, 46924700 (2017).CrossRefGoogle ScholarPubMed
Li, Z.P., Zhao, Q.Q., Fan, W.L., and Zhan, J.H.: Porous SnO2 nanospheres as sensitive gas sensors for volatile organic compounds detection. Nanoscale 3, 6461652 (2011).CrossRefGoogle ScholarPubMed
Ren, H.B., Zhao, W., Wang, L.Y., Ryu, S.O., and Gu, C.P.: Preparation of porous flower-like SnO2 micro/nano structures and their enhanced gas sensing property. J. Alloys Compd. 653, 611618 (2015).CrossRefGoogle Scholar
Du, H.Y., Wang, J., Yu, P., Yu, N.S., Sun, Y.H., and Tian, J.L.: Investigation of gas sensing materials tin oxide nanofibers treated by oxygen plasma. J. Nanopart. Res. 16, 2216 (2014).CrossRefGoogle Scholar
Castro-Hurtado, I., Herrán, J., Mandayo, G.G., and Castãno, E.: SnO2-nanowires grown by catalytic oxidation of tin sputtered thin films for formaldehyde detection. Thin Solid Films 520, 7924796 (2012).CrossRefGoogle Scholar
Xu, R., Zhang, L.X., Li, M.W., Yin, Y.Y., Yin, J., Zhu, M.Y., Chen, J.J., Wang, Y., and Bie, L.J.: Ultrathin SnO2 nanosheets with dominant high-energy {001} facets for low temperature formaldehyde gas sensor. Sens. Actuat. B 289, 186194 (2019).CrossRefGoogle Scholar