Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T00:46:18.879Z Has data issue: false hasContentIssue false

Synthesis of pure amorphous Fe2O3

Published online by Cambridge University Press:  31 January 2011

X. Cao
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel, 52900
R. Prozorov
Affiliation:
Department of Physics, Bar-Ilan University, Ramat-Gan, Israel, 52900
Yu. Koltypin
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel, 52900
G. Kataby
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel, 52900
I. Felner
Affiliation:
Racah Institute of Physics, Hebrew University, Jerusalem, Israel
A. Gedanken
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel, 52900
Get access

Abstract

A method for the preparation of pure amorphous Fe2O3 powder with particle size of 25 nm is reported in this article. Pure amorphous Fe2O3 can be simply synthesized by the sonication of neat Fe(CO)5 or its solution in decalin under an air atmosphere. The Fe2O3 nanoparticles are converted to crystalline Fe3O4 nanoparticles when heated to 420 °C under vacuum or when heated to the same temperature under a nitrogen atmosphere. The crystalline Fe3O4 nanoparticles were characterized by x-ray diffraction and M¨ossbauer spectroscopy. The Fe2O3 amorphous nanoparticles were examined by Transmission Electron Micrography (TEM), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), and Quantum Design SQUID magnetization measurements. The magnetization of pure amorphous Fe2O3 at room temperature is very low (<1.5 emu/g) and it crystallizes at 268 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Livage, J., J. Phys., colloque C4, supplement au no. 10, Tome 42, 981 (1981).Google Scholar
2.Ferromagnetic Materials, edited by Wohlfarth, E. P. (North-Holland, Amsterdam, 1980), Vol. 2, p. 405.Google Scholar
3.Murawski, L., Chang, C. H., and Mackenzie, J. D., J. Non-Cryst. Solids 32, 91 (1979).CrossRefGoogle Scholar
4.Curry-Hyde, H. E., Musch, H., and Baiker, A., Appl. Catal. 65, 211 (1990).CrossRefGoogle Scholar
5.Cao, H. and Suib, S. L., J. Am. Chem. Soc. 116, 5334 (1994).CrossRefGoogle Scholar
6.Sugimoto, M., J. Magn. Magn. Mater. 133, 460 (1994).CrossRefGoogle Scholar
7.Tanaka, K., Hirao, K., and Soga, N., J. Appl. Phys. 69, 7752 (1991).CrossRefGoogle Scholar
8.Sugimoto, M. and Hiratsuka, N., J. Magn. Magn. Mater. 31/34, 1533 (1983).CrossRefGoogle Scholar
9.Steger, W. E., Landmesser, H., Boettcher, U., and Schubert, E., J. Mol. Struc. 217, 341 (1990).CrossRefGoogle Scholar
10.Pashmakov, B., Claflin, B., and Fritzsche, H., Solid State Commun. 86, 619 (1993).CrossRefGoogle Scholar
11.Kandory, K. and Ishikawa, T., Langmuir 7, 2213 (1991).CrossRefGoogle Scholar
12.Suslick, K. S., Choe, S. B., Cichowlas, A. A., and Grinstaff, M. W., Nature (London) 353, 414 (1991).CrossRefGoogle Scholar
13.Suslick, K. S., Fang, M., Heyon, T., and Cichowlas, A. A., in Molecularly Designed Ultrafine/Nanostructured Materials, edited by Gonsalves, K. E., Chow, G-M., Xiao, T. D., and Cammarata, R. C. (Mater. Res. Soc. Symp. Proc. 351, Pittsburgh, PA, 1994).Google Scholar
14. K. S. Suslick, T. Heyon, M. Fang, and A. A. Cichowlas, ibid.Google Scholar
15.Grinstaff, M. W., Salamon, M. B., and Suslick, K. S., Phys. Rev. B 48, 269 (1993).CrossRefGoogle Scholar
16.Cao, X., Koltypin, Yu., Kataby, G., Prozorov, R., and Gedanken, A., J. Mater. Res. 10, 2996 (1995).Google Scholar
17.Koltypin, Yu., Cao, X., Kataby, G., Prozorov, R., and Gedanken, A., J. Non-Cryst. Solids 201, 159 (1996).CrossRefGoogle Scholar
18.Feigel, F., Spot Tests, Inorganic Applications (Elsevier Publishing Co., New York, 1954), Vol. 1, pp. 154155.Google Scholar
19.Cotton, F. A. and Wilkinson, G., Advanced Inorganic Chemistry (Interscience Publishers, New York, 1962), p. 709.Google Scholar
20.Greenwood, N. N. and Gibb, T. C., Mössbauer Spectroscopy (Chapman and Hall Ltd., London, 1971), p. 251.CrossRefGoogle Scholar
21.Elliott, S. R., Physics of Amorphous Materials (Longman, London and New York, 1984), pp. 350357.Google Scholar
22.Morup, S., Europhys. Lett. 28, 671 (1994); S. Morup and E. Trone, Phys. Rev. Lett. 72, 3278 (1994).CrossRefGoogle Scholar