Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T08:49:44.484Z Has data issue: false hasContentIssue false

Synthesis of boron carbide nanoparticles via spray pyrolysis

Published online by Cambridge University Press:  01 August 2016

Beril Ozcelik*
Affiliation:
Mechanical Engineering Department, Kahramanmaras Sutcu Imam University, Onikisubat, Kahramanmaras 46050, Turkey
Celaletdin Ergun*
Affiliation:
Department of Mechanical Engineering, Gumussuyu Campus, Istanbul Technical University, Taksim, Istanbul 34437, Turkey; and Prof. Dr. Adnan Tekin, Materials Science & Production Technologies, Applied Research Center, Istanbul Technical University, Maslak, Istanbul34469, Turkey
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

A continuous process was developed to synthesize submicron boron carbide particles from boric acid and sucrose-based precursor solutions using a home-made spray pyrolysis system. A control set of samples was also prepared for comparison purposes of the microstructure and morphology of the ones synthesized via the spray pyrolysis method. Moreover, nickel nitrate was used in a precursor solution to investigate its catalyst effects on the reaction kinetics of boron carbide formation. The boron carbide phase was observed in the particles synthesized with spray pyrolysis at a reactor temperature of 1550 °C. The average particle size was approximately 0.46 μm. No effect of nickel additions was observed as a catalyst in boron carbide formation. Computational fluid dynamics software was used to model and simulate the experimental system. Simulation results provided information about the residence time and the temperature distribution along the tube reactor.

Type
Focus Section: Reinventing Boron Chemistry and Materials for the 21st Century
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hugh, O.P.: Handbook of Refractory Carbides and Nitrides Properties, Characteristics, Processing and Applications (Noyes Publications, New Jersey, 1996); p. 118.Google Scholar
Suri, A.K., Subramanian, C., Sonber, J.K., and Murthy, T.S.R.Ch.: Synthesis and consolidation of boron carbide: A review. Int. Mater. Rev. 55, 4 (2010).Google Scholar
Aselage, T.L., Emin, D., McCready, S.S., and Duncan, R.V.: Large enhancement of boron carbides' Seebeck coefficients through vibrational softening. Phys. Rev. Lett. 81, 2316 (1998).Google Scholar
Aselage, T.L., Emin, D., and McCready, S.S.: Conductivities and seebeck coefficients of boron carbides: Softening bipolaron hopping. Phys. Rev. B. 64, 054302 (2001).Google Scholar
Emin, D. and Aselage, T.L.: A proposed boron-carbide-based solid-state neutron detector. J. Appl. Phys. 97, 013529 (2005).CrossRefGoogle Scholar
Guan, Z., Gutu, T., Yang, J., Yang, Y., Zinn, A.A., Li, D., and Xu, T.T.: Boron carbide nanowires: Low temperature synthesis and structural and thermal conductivity characterization. J. Mater. Chem. 22, 9853 (2012).Google Scholar
Wood, C., Emin, D., and Gray, P.E.: Thermal conductivity behavior of boron carbides. Phys. Rev. B. 31, 6811 (1985).Google Scholar
Emin, D.: Unusual properties of icosahedral boron-rich solids. J. Solid State Chem. 179, 2791 (2006).Google Scholar
Wood, C.: Boron carbides as high temperature thermoelectric materials. In Boron Rich Solids, Emin, D., Aselage, T., Beckel, C.L., Howard, I.A., and Wood, C. eds.; AIP Conf. Proc 140, American Institute of Physics: New York, 1986; p. 362.Google Scholar
Aselage, T.L.: In Mater. Res. Soc. Symp. Proc. (San Francisco, CA, 1991); p. 145.Google Scholar
Werheit, H.: In 25th Int. Conf. Thermoelectr. (Vienna, Austria, 2006); p. 159.Google Scholar
Wood, C.: Materials for thermoelectric energy conversion. Rep. Prog. Phys. 51, 459 (1988).CrossRefGoogle Scholar
Du, X., Zhang, Z., Wang, Y., Wang, J., Wang, W., Wang, H., and Fu, Z.: Hot-pressing kinetics and densification mechanisms of boron carbide. J. Am. Ceram. Soc. 98, 1400 (2015).Google Scholar
Schwetz, K.A. and Grellner, G.W.: The influence of carbon on the microstructure and mechanical properties of sintered boron carbide. J. Less-Common Met. 82, 37 (1981).Google Scholar
Greskovich, C. and Rosolowski, L.H.: Sintering of covalent solids. J. Am. Ceram. Soc. 59, 336 (1976).Google Scholar
Dole, S.L. and Prochazka, S.: Densification and microstructure development in boron carbide. Ceram. Eng. Sci. Proc. 6, 1151 (1985).Google Scholar
Dole, S.L., Prochazka, S., and Doremus, R.H.: Microstructural coarsening during sintering of boron carbide. J. Am. Ceram. Soc. 72, 958 (1989).Google Scholar
Larsson, P., Axen, N., and Hogmark, S.: Improvements of the microstructure and erosion resistance of boron carbide with additives. J. Mater. Sci. 35, 3433 (2000).Google Scholar
Thevenot, F.: Boron carbide-a comprehensive review. J. Eur. Ceram. Soc. 6, 205 (1990).Google Scholar
Lee, H. and Speyer, R.F.: Pressureless sintering of boron carbide. J. Am. Ceram. Soc. 86, 1468 (1990).Google Scholar
Roy, T.K., Subramanian, C., and Suri, A.K.: Pressureless sintering of boron carbide. Ceram. Int. 32, 227 (2006).Google Scholar
Li, X., Jiang, D., Zhang, J., Lin, Q., Chen, Z., and Huang, Z.: Pressureless sintering of boron carbide with Cr3C2 as sintering additive. J. Eur. Ceram. Soc. 34, 1073 (2014).Google Scholar
Yin, J., Huang, Z., Liu, X., Zhang, Z., and Jiang, D.: Microstructure, mechanical and thermal properties of in situ toughened boron carbide-based ceramic composites codoped with tungsten carbide and pyrolytic carbon. J. Eur. Ceram. Soc. 33, 1647 (2013).CrossRefGoogle Scholar
Xian-Wu, D., Zhi-Xiao, Z., Wei-Min, W., Zheng-Yi, F., and Hao, W.: Effect of particle size on densification and properties of hot-pressed boron carbide. J. Inorg. Mater. 28, 1062 (2013).Google Scholar
Ostapenko, I.T., Slezov, V.V., Tarasov, R.V., Kartsev, N.F., and Podtykan, V.P.: Densification of boron carbide powder during hot pressing. Sov. Powder Metall. Met. Ceram. 18, 312 (1979).Google Scholar
Yin, B.Y. and Wang, L.S.: Study on physical properties of hot-pressing sintering B4C ceramic. Atom Energy Sci. Technol. 38, 429 (2004).Google Scholar
Angers, R. and Beauvy, M.: Hot-Pressing of boron carbide. Ceram. Int. 10, 49 (1983).Google Scholar
Yue, X., Chen, B., Zhao, J., Wang, W., and Ru, H.: Microstructures and properties of B4C ceramics prepared by hot-pressing method. Rare Met. Mater. Eng. 40, 533 (2011).Google Scholar
Mashhadi, M., Taheri-Nassaj, E., and Sglavo, V.M.: Pressureless sintering of boron carbide. Ceram. Int. 36, 151 (2010).Google Scholar
Yamada, S., Hirao, K., Yamauchi, Y., and Kanzaki, S.: Mechanical and electrical properties of B4C–CrB2 ceramics fabricated by liquid phase sintering. Ceram. Int. 29, 299 (2003).Google Scholar
Levin, L., Frage, N., and Dariel, M.P.: Novel approach for the preparation of B4C-based cermets. Int. J. Refract. Met. Hard Mater. 18, 131 (2000).Google Scholar
Goldstein, A., Geffen, Y., and Goldenberg, A.: Boron carbide–zirconium boride in situ composites by the reactive pressureless sintering of boron carbide zirconia mixtures. J. Am. Ceram. Soc. 84, 642 (2001).Google Scholar
Zakhariev, Z. and Radev, D.: Properties of polycrystalline boron carbide sintered in the presence of W2B5 without pressing. J. Mater. Sci. Lett. 7, 695 (1988).Google Scholar
Ruh, R., Kearns, M., Zangvil, A., and Xu, Y.: Phase and property studies of boron carbide–boron nitride composites. J. Am. Ceram. Soc. 75, 864 (1992).Google Scholar
Tuffe, S., Dubois, J., Fantozzi, G., and Barbier, G.: Densification, microstructure and mechanical properties of TiB2–B4C based composites. Int. J. Refract. Met. Hard Mater. 14, 305 (1996).Google Scholar
Skorokhod, V. and Krstic, V.D.: High strength-high toughness B4C–TiB2 composites. J. Mater. Sci. Lett. 19, 237 (2000).Google Scholar
Mashhadi, M., Taheri-Nassaj, E., Sglavo, V.M., Sarpoolaky, H., and Ehsani, N.: Effect of Al addition on pressureless sintering of B4C. Ceram. Int. 35, 831 (2009).Google Scholar
Kim, H.W., Koh, Y.H., and Kim, H.E.: Densification and mechanical properties of B4C with Al2O3 as a sintering additives. J. Am. Ceram. Soc. 83(11), 2363 (2000).Google Scholar
Hayun, S., Kalabukhov, S., Ezersky, V., Dariel, M.P., and Frage, N.: Microstructural characterization of spark plasma sintered boron carbide ceramics. Ceram. Int. 36, 451 (2010).Google Scholar
Alizadeh, A., Taheri-Nassaja, E., and Ehsani, N.: Synthesis of boron carbide powder by a carbothermic reduction method. J. Eur. Ceram. Soc. 24, 3227 (2004).Google Scholar
Yanase, I., Ogawara, R., and Kobayashi, H.: Synthesis of boron carbide powder from polyvinyl borate precursor. Mater. Lett. 63, 91 (2009).Google Scholar
Welna, D.T., Bender, J.D., Wei, X., Sneddon, L.G., and Allcock, H.R.: Preparation of boron-carbide/carbon nanofibers from a poly(norbornenyldecaborane) single-source precursor via electrostatic spinning. Adv. Mater. 7, 859 (2005).Google Scholar
Hadian, A.M. and Bigdeloo, J.A.: The effect of time, temperature and composition on boron carbide synthesis by sol–gel method. J. Mater. Eng. Perform. 17, 44 (2008).Google Scholar
Ergun, C. and Yilmaz, S.: Patent No: Wo 2009/070131 A2, 2009.Google Scholar
Cakir, E., Ergun, C., Sahin, F.C., and Erden, I.: In situ synthesis of B4C/TiB2 composites from low cost sugar based precursor. Defect Diffus. Forum 297–301, 52 (2010).Google Scholar
Tao, B.X., Dong, L., Wang, X., Zhang, W., Nelson, B.J., and Li, X.: B4C-nanowires/carbon-microfiber hybrid structures and composites from cotton t-shirts. Adv. Mater. 22, 2055 (2010).Google Scholar
Messing, G.L., Zhang, S.C., and Jayanthi, G.V.: Ceramic powder synthesis by spray pyrolysis. J. Am. Ceram. Soc. 76, 2707 (1993).Google Scholar
Ozcelik, B.K. and Ergun, C.: Synthesis of ZnO nanoparticles by an aerosol process. Ceram. Int. 40, 7107 (2014).Google Scholar
Ozcelik, B.K. and Ergun, C.: Synthesis and characterization of iron oxide particles using spray pyrolysis technique. Ceram. Int. 41, 1994 (2015).Google Scholar
Ergun, C. and Ozcelik, B.K.: Effect of Ni on the synthesize boron carbide via aerosol method. Presented at the TMS 2015 Orlando FL, USA, 2015.Google Scholar
Ozcelik, B.K. and Ergun, C.: Boronated carbon and boron carbide synthesize via aerosol method. Presented at the Mater Sci Technol-14, Pittsburgh, USA, 2014.Google Scholar
Ozcelik, B.K., Ergun, C., and Dulger, O.: Synthesis and characterization of ZnO nanoparticles formed by spray pyrolysis process. Presented at the Int. Conference on Composites or Nano Eng ICCE-21, Tenerife, Spain, 2013.Google Scholar
Lenggoro, I.W., Hata, T., Iskandar, F., Lunden, M.M., and Okuyama, K.: An experimental and modeling investigation of particle production by spray pyrolysis using a laminar flow aerosol reactor. J. Mater. Res. 15, 733 (2000).Google Scholar
Lenggoroa, I.W., Itoha, Y., Iidab, N., and Okuyama, K.: Control of size and morphology in NiO particles prepared by a low-pressure spray pyrolysis. Mater. Res. Bull. 38, 1819 (2003).Google Scholar
Chiang, C-Y., Aroh, K., and Ehrman, S.H.: Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting-part I: CuO nanoparticle preparation. Int. J. Hydrogen Energy 37, 4871 (2012).Google Scholar
Chen, C.Y., Tseng, T.K., Tsai, S.C., Lin, C.K., and Lin, H.M.: Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis. Ceram. Int. 34, 409 (2008).Google Scholar
Eslamian, M. and Ashgriz, N.: Effect of precursor, ambient pressure and temperature on the morphology, crystallinity and decomposition of powders prepared by spray pyrolysis and drying. Powder Technol. 167, 149 (2006).Google Scholar
Cho, J.S. and Rhee, S-H.: Formation mechanism of nano-sized hydroxyapatite powders through spray pyrolysis of a calcium phosphate solution containing polyethylene glycol. J. Eur. Ceram. Soc. 33, 233 (2013).Google Scholar
Pingali, K.C., Rockstraw, D.A., and Deng, S.: Silver nanoparticles from ultrasonic spray pyrolysis of aqueous silver nitrate. Aerosol Sci. Technol. 39, 1010 (2005).Google Scholar
Xiao, T.D., Gonsalves, K.E., Strutt, P.R., and Klemens, P.G.: Synthesis of Si(N,C) nanostructured powders from an organometallic aerosol using a hot-wall reactor. J. Mater. Sci. 28, 1334 (1993).Google Scholar
Yoshida, H., Deguchi, H., Kawano, M., Hashino, K., Inagaki, T., Ijichi, H., Horiuchi, M., Kawahara, K., and Suda, S.: Study on pyrolysing behavior of NiO–SDC composite particles prepared by spray pyrolysis technique. Solid State Ionics 178, 399 (2007).CrossRefGoogle Scholar
Yang, S-Y. and Kim, S-G.: Characterization of silver and silver/nickel composite particles prepared by spray pyrolysis. Powder Technol. 146, 185 (2004).Google Scholar
Swihart, M.T.: Vapor-phase synthesis of nanoparticles. Curr. Opinion Colloid and Interface Sci. 8, 127 (2003).Google Scholar
Pratsinis, S.E., Skillas, G., Maisels, A., and Kodas, T.T.: Manufacturing of materials by aerosol processes. In Aerosol Measurement: Principles and Techniques, And Applications, Kulkarni, P., Baron, P.A., and Willeke, K., eds. (John Wiley & Sons, Hoboken, 2011); pp. 751770.Google Scholar
Olesik, J.W., Kinzer, J.A., and Harkleroad, B.: Inductively coupled plasma optical emission spectrometry using nebulizers with widely different sample consumption rates. Anal. Chem. 66, 2022 (1994).Google Scholar
Burgener, J.A.: Enhanced parallel path nebulizer with a large range of flow rates. US Patent: 6634572, 2003. Google Scholar
Augagneur, S., Medina, B., Szpunar, J., and Lobinski, R.J.: Determination of rare earth elements in wine by inductively coupled plasma mass spectrometry using a microconcentric nebulizer. J. Anal. At. Spectrom. 11, 713 (1996).Google Scholar
Liu, Y., Lopez-Avila, V., Zhu, J.J., Wiederin, D.R., and Beckert, W.F.: Capillary electrophoresis coupled on-line with inductively coupled plasma mass spectrometry for elemental speciation. Anal. Chem. 67, 2020 (1995).Google Scholar
Wang, L., May, S.W., Browner, R.F., and Pollock, S.H.: Low-flow interface for liquid chromatography–inductively coupled plasma mass spectrometry speciation using an oscillating capillary nebulizer. J. Anal. At. Spectrom. 11, 1137 (1996).Google Scholar
Sharp, B.L.: Pneumatic nebulizers and spray chambers for inductively coupled plasma spectrometry. A review. Part 2. Spray chambers. J. Anal. At. Spectrom. 3, 939 (1988).Google Scholar
Burke, S.D. and Danheiser, R.L.: Handbook of Reagents for Organic Synthesis, Oxidizing and Reducing Agents (John Wiley & Sons, Chicester, 1999); p. 246.Google Scholar
Todoli, J.L. and Mermet, J.M.: Liquid Sample Introduction in ICP Spectrometry, 1st ed. (Elsevier, Amsterdam, 2008).Google Scholar
Todoli, J.L. and Mermet, J.M.: Effect of the spray chamber design on steady and transient acid interferences in inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom. 15, 863 (2000).Google Scholar
ANSYS Inc.: Ansys Fluent 12.0 User's Guide, 2009.Google Scholar
Saidaminov, M.I., Maksimova, N.V., and Avdeev, V.V.: Expandable graphite modification by boric acid. J. Mater. Res. 27, 1054 (2012).Google Scholar
Khanra, A.K.: Production of boron carbide powder by carbothermal synthesis of gel material. Bull. Mater. Sci. 30, 93 (2007).Google Scholar
Kakiage, M., Tominaga, Y., Yanase, I., and Kobayashi, H.: Synthesis of boron carbide powder in relation to composition and structural homogeneity of precursor using condensed boric acid–polyol product. Powder Technol. 221, 257 (2012).Google Scholar
Pilladi, T.R., Ananthasivan, K., Anthonysamy, S., and Ganesan, V.: Synthesis of nanocrystalline boron carbide from boric acid–sucrose gel precursor. J. Mater. Sci. 47, 1710 (2012).Google Scholar
Mondal, S. and Banthia, A.K.: Low temperature synthetic route for boron carbide. J. Eur. Ceram. Soc. 25, 287 (2005).Google Scholar
Parsons, J.L. and Milberg, M.E.: Vibrational spectra of vitreous B2O3·xH2O. J. Am. Ceram. Soc. 43, 326 (1960).Google Scholar
Romanos, J., Beckner, M., Stalla, D., Tekeei, A., Suppes, G., Jalisatgi, S., Lee, M., Robertson, J.D., Firlej, L., Kuchta, B., Wexler, C., Pfeifer, P., and Yu, P.: Infrared study of boron–carbon chemical bonds in boron-doped activated carbon. Carbon 54, 208 (2013).Google Scholar
Kim, K.N. and Kim, S-G.: Nickel particles prepared from nickel nitrate with and without urea by spray pyrolysis. Powder Technol. 145, 155 (2004).Google Scholar
Milosevic, O., Mancic, L., Rabanal, M.E., Gomez, L.S., and Marinkovic, K.: Aerosol route in processing of nanostructured functional materials. KONA Powder and Part J. 27, 84 (2009).Google Scholar
Chhowalla, M., Yin, Y., Amaratunga, G.A.J., McKenzie, D.R., and Frauenheim, Th.: Boronated tetrahedral amorphous carbon (ta-C: B). Diam. Relat. Mater. 6, 207 (1997).Google Scholar
Vishwakarma, P.N., Prasad, V., Subramanyam, S.V., and Ganesan, V.: Structural morphology of amorphous conducting carbon film. Bull. Mater. Sci. 28, 609 (2005).Google Scholar
Jung, C-H., Lee, M-J., and Kim, C-J.: Preparation of carbon-free B4C powder from B2O3 oxide by carbothermal reduction process. Mater. Lett. 58, 609 (2004).Google Scholar
Takano, M., Itoh, A., Akabori, M., and Ogawa, T.: Oxygen solubility in dysprosium mononitride prepared by carbothermic synthesis. J. Alloys Compd. 327, 235 (2001).Google Scholar
Yang, B.H., Wang, J., Joseph, D.D., Hu, H.H., Pan, T-W., and Glowinski, R.: Migration of a sphere in tube flow. J. Fluid Mech. 540, 109 (2005).Google Scholar
Park, S.H., Kim, W.J., and Kim, S.S.: Thermophoretic transport and deposition of particles in vertical tube flow with variable wall temperature and thermal radiation. KSME Int. J. 13, 253 (1999).CrossRefGoogle Scholar
Moore, M.J. and Crane, R.I.: Chapter 4. Deposition and Corrosion in Gas Turbine, Hart, A.B. and Cutler, A.J.B. eds.; John Wiley & Sons: New York, 1973; p. 34.Google Scholar
Nazarchuk, T.N. and Mekhanoshina, L.N.: The oxidation of boron carbide. Soviet Powder Metallurgy Metal Ceram. 3, 123 (1964).Google Scholar
Samsonov, G.V.: Chemical Properties and Analysis of Refractory Compounds (Consultants Bureau, New York, 1972).Google Scholar
Kosolapova, T. Va.: Carbides Properties, Production, and Applications (Plenum Press, New York, 1971).Google Scholar
Bigdeloo, J.A. and Hadian, A.M.: Synthesis of high purity micron size boron carbide powder from B2O3/C precursor. Int. J. Recent Trends in Eng. 1, 176 (2009).Google Scholar
Najafi, A., Golestani-Fard, F., Rezaie, H.R., and Ehsani, N.: A novel route to obtain B4C nano powder via sol–gel method. Ceram. Int. 38, 3583 (2012).Google Scholar
Speyer, R.F. and Lee, H.: Advances in pressureless densification of boron carbide. J. Mater. Sci. 39, 6017 (2004).Google Scholar
Tsai, S.C., Song, Y.L., Tsai, C.S., Yang, C.C., Chiu, W.Y., and Lin, H.M.: Ultrasonic spray pyrolysis for nanoparticles synthesis. J. Mater. Sci. 39, 3647 (2004).Google Scholar
Kim, J.H., Babushok, V.I., Germer, T.A., Mulholland, G.W., and Ehrman, S.H.: Co-solvent assisted spray pyrolysis for the generation of metal particles. J. Mater. Res. 18, 1614 (2003).Google Scholar
Reddy, E.S., Noudem, J.G., Hebert, S., and Goupil, C.: Fabrication and properties of four-leg oxide thermoelectric modules. J. Phys. D: Appl. Phys. 38, 3751 (2005).Google Scholar
Mori, T., Nishimura, T., Yamaura, K., and Takayama-Muromachi, E.: High temperature thermoelectric properties of a homologous series of n-type boron icosahedra compounds: A possible counterpart to p-type boron carbide. J. Appl. Phys. 101, 093714 (2007).Google Scholar
Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J-K., Goddard, W.A. III, and Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008).Google Scholar
Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., and Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008).Google Scholar
Bux, S.K., Blair, R.G., Gogna, P.K., Lee, H., Chen, G., Dresselhaus, M.S., Kaner, R.B., and Fleurial, J-P.: Nanostructured bulk silicon as an effective thermoelectric material. Adv. Funct. Mater. 19, 2445 (2009).Google Scholar
Mahan, G.D.: In Solid State Physics: Advances in Research and Applications, Ehrenreich, H. and Spaepen, F. ed.; Academic Press: San Diego, CA, 1998; pp. 81157.Google Scholar
Szczech, J.R., Higgins, J.M., and Jin, S.: Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem. 21, 4037 (2011).Google Scholar