Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T07:00:30.301Z Has data issue: false hasContentIssue false

Synthesis, microstructure, and photoluminescence properties of thornlike SiC:Tb nanostructures

Published online by Cambridge University Press:  31 January 2011

Erqing Xie*
Affiliation:
School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Thornlike Tb-doped SiC (SiC:Tb) nanostructures were synthesized through a carbothermal reduction of electrospun Tb-doped SiO2 nanofibers (SiO2:Tb). The synthesized SiC nanostructures annealed at a high temperature of 1300 °C displayed a unique morphology and a high crystalline quality with the β-SiC phase. Strong green-light emissions were detected from the SiC:Tb samples. Photoluminescence excitation results show that, besides a small amount of energy coming from the SiC cores (464 nm), most of the energy needed for the excitation of Tb3+ ions comes from the light absorption of the SiO2–Tb surface layers (295 nm) and near-interface regions in the samples (388 nm). Transmission electron microscopy, energy dispersive spectrometry, and Raman analyses suggested that the formations of Tb clusters and SiO2 surface layers are very important to the enhancement of the luminescence behaviors of Tb3+ ions. Finally, we have constructed an excitation model and further proposed an energy transfer mechanism for these thornlike SiC:Tb nanostructures.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kenyon, A.J.Recent developments in rare-earth doped materials for optoelectronics. Prog. Quantum Electron. 26, 225 (2002)CrossRefGoogle Scholar
2.Choyke, W.J., Devaty, R.P., Clemen, L.L., Yoganathan, M., Pensl, G., Hässler, Ch.Intense erbium-1.54-μm photoluminescence from 2 to 525 K in ion-implanted 4H, 6H, 15R, and 3C SiC. Appl. Phys. Lett. 65, 1668 (1994)Google Scholar
3.Steckl, A.J., Devrajan, J., Choyke, W.J., Devaty, R.P., Yoganathan, M., Novak, S.W.Effect of annealing temperature on 1.5 μm photoluminescence from Er-implanted 6H-SiC. J. Electron. Mater. 25, 869 (1996)Google Scholar
4.Markmann, M., Neufeld, E., Sticht, A., Brunner, K., Abstreiter, G., Buchal, Ch.Enhancement of erbium photoluminescence by substitutional C alloying of Si. Appl. Phys. Lett. 75, 2584 (1999)CrossRefGoogle Scholar
5.Uekusa, S., Awahara, K., Kumagai, M.Photoluminescence from Er-implanted polycrystalline 3C SiC. IEEE Trans. Electron Devices 46, 572 (1999)Google Scholar
6.Babunts, R.A., Vetrov, V.A., Il'in, I.V., Mokhov, E.N., Romanov, N.G., Khramtsov, V.A., Baranov, P.G.Properties of erbium luminescence in bulk crystals of silicon carbide. Phys. Solid State 42, 829 (2000)Google Scholar
7.Kozanecki, A., Glukhanyuk, V., Jantsch, W.High-resolution spectroscopy of Er3+ ions in 6H SiC. Mater. Sci. Eng., B 105, 169 (2003)CrossRefGoogle Scholar
8.Gallis, S., Efstathiadis, H., Huang, M., Nyein, E.E., Hommerich, U., Kaloyeros, A.E.Room-temperature photoluminescence at 1540 nm from amorphous silicon carbide films implanted with erbium. J. Mater. Res. 19, 2389 (2004)Google Scholar
9.Gallis, S., Huang, M., Efstathiadis, H., Eisenbraun, E., Kaloyerosa, A.E., Nyein, E.E., Hommerich, U.Photoluminescence in erbium-doped amorphous silicon oxycarbide thin films. Appl. Phys. Lett. 87, 091901 (2005)Google Scholar
10.Glukhanyuk, V., Kozanecki, A.Site selective studies of Er emission centers in Er-implanted 6H–SiC. Appl. Phys. Lett. 89, 211114 (2006)CrossRefGoogle Scholar
11.Kawai, S., Masaki, T., Kato, Y., Motooka, T.Luminescence from Nd- and Dy-ion-implanted 4H–SiC. Appl. Phys. Lett. 88, 191904 (2006)Google Scholar
12.Sendova-Vassileva, M., Nikolaeva, M., Dimova-Malinovska, D., Tzolov, M., Pivin, J.C.Room-temperature photoluminescence from Tb3+ ions in SiO2 and a-SiC:H thin films deposited by magnetron co-sputtering. Mater. Sci. Eng., B 81, 185 (2001)Google Scholar
13.Nikolaeva, M., Sendova-Vassileva, M., Dimova-Malinovska, D., Pivin, J.C.Optical properties and room-temperature photoluminescence from Tb3+ ions in a-Si1−xCx:H thin films. Vacuum 69, 233 (2003)Google Scholar
14.Xu, D.Y., Liu, Y.P., He, Z.W., Fang, Z.B., Liu, X.Q., Wang, Y.Y.The behavior of photolumine scence from SiC:Tb films deposited on porous silicon substrate. Acta Phys. Sin.-Ch. Ed 53, 2694 (2004)Google Scholar
15.Xu, D.Y., Liu, Y.P., Chen, Z.Y., He, Z.W., Liu, X.Q., Wang, Y.Y.Effects of annealing on the structure and photoluminescence of amorphous SiC: Tb films deposited on porous silicon substrate. Mater. Sci. Forum 475–479, 3681 (2005)Google Scholar
16.Weingärtner, R., Erlenbach, O., de Zela, F., Winnacker, A., Brauer, I., Strunk, H.P.Cathodoluminescence measurements and thermal activation of rare earth doped (Tb3+, Dy3+ and Eu3+) a-SiC thin films prepared by rf magnetron sputtering. Mater. Sci. Forum 527–529, 663 (2006)Google Scholar
17.Amekura, H., Eckau, A., Carius, R., Buchal, Ch.Room-temperature photoluminescence from Tb ions implanted in SiO on Si. J. Appl. Phys. 84, 3867 (1998)Google Scholar
18.Lu, F., Carius, R., Alam, A., Heuken, M., Buchal, Ch.Green electroluminescence from a Tb-doped AlN thin-film device on Si. J. Appl. Phys. 92, 2457 (2002)Google Scholar
19.Liang, X., Yang, Y., Zhu, C., Yuan, S., Chen, G., Pring, A., Xia, F.Luminescence properties of Tb–Sm codoped glasses for white light emitting diodes. Appl. Phys. Lett. 91, 091104 (2007)Google Scholar
20.Kassab, L.R.P., de Almeida, R., da Silva, D.M., de Araújo, C.B.Luminescence of Tb doped TeO–ZnO–NaO–PbO glasses containing silver nanoparticles. J. Appl. Phys. 104, 093531 (2008)Google Scholar
21.Fan, J.Y., Wu, X.L., Chu, P.K.Low-dimensional SiC nanostructures: Fabrication, luminescence, and electrical properties. Prog. Mater. Sci. 51, 983 (2006)Google Scholar
22.Zhou, W., Zhang, Y., Niu, X., Min, G.One-dimensional SiC nanostructures: Synthesis and propertiesOne-Dimensional Nanostructures edited by Z.M. Wang (Springer Press, New York 2008)17Google Scholar
23.Shor, J.S., Bemis, L., Kurtz, A.D., Grimberg, I., Weiss, B.Z., MacMillian, M.F., Choyke, W.J.Characterization of nanocrystallites in porous p-type 6H–SiC. J. Appl. Phys. 76, 4045 (1994)CrossRefGoogle Scholar
24.Han, W., Fan, S., Li, Q., Liang, W., Gu, B., Yu, D.Continuous synthesis and characterization of silicon carbide nanorods. Chem. Phys. Lett. 265, 374 (1997)Google Scholar
25.Liang, C.H., Meng, G.W., Zhang, L.D., Wu, Y.C., Cui, Z.Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles. Chem. Phys. Lett. 329, 323 (2000)Google Scholar
26.Hu, J.Q., Lu, Q.Y., Tang, K.B., Deng, B., Jiang, R.R., Qian, Y.T., Yu, W.C., Zhou, G.E., Liu, X.M., Wu, J.X.Synthesis and characterization of SiC nanowires through a reduction–carburization route. J. Phys. Chem. B 104, 5251 (2000)Google Scholar
27.Gundiah, G., Madhav, G.V., Govindaraj, A., Seikh, M.M., Rao, C.N.R.Synthesis and characterization of silicon carbide, silicon oxynitride and silicon nitride nanowires. J. Mater. Chem. 12, 1606 (2002)CrossRefGoogle Scholar
28.Feng, D.H., Jia, T.Q., Li, X.X., Xu, Z.Z., Chen, J., Deng, S.Z., Wu, Z.S., Xu, N.S.Catalytic synthesis and photoluminescence of needle-shaped 3C–SiC nanowires. Solid State Commun. 128, 295 (2003)CrossRefGoogle Scholar
29.Seong, H.K., Choi, H.J., Lee, S.K., Lee, J.I., Choi, D.J.Optical and electrical transport properties in silicon carbide nanowires. Appl. Phys. Lett. 85, 1256 (2004)Google Scholar
30.Li, K.Z., Wei, J., Li, H.J., Li, Z.J., Hou, D.S., Zhang, Y.L.Photoluminescence of hexagonal-shaped SiC nanowires prepared by sol-gel process. Mater. Sci. Eng., A 460–461, 233 (2007)Google Scholar
31.Wei, J., Li, K., Li, H., Hou, D., Zhang, Y., Wang, C.Large-scale synthesis and photoluminescence properties of hexagonal-shaped SiC nanowires. J. Alloys Compd. 462, 271 (2008)Google Scholar
32.Chen, J., Wu, R., Yang, G., Pan, Y., Lin, J., Wu, L., Zhai, R.Synthesis and photoluminescence of needle-shaped 3C–SiC nanowires on the substrate of PAN carbon fiber. J. Alloys Compd. 456, 320 (2008)Google Scholar
33.Ye, H., Titchenal, N., Gogotsi, Y., Ko, F.SiC nanowires synthesized from electrospun nanofiber templates. Adv. Mater. 17, 1531 (2005)Google Scholar
34.Li, J., Zhang, Y., Zhong, X., Yang, K., Meng, J., Cao, X.Single-crystalline nanowires of SiC synthesized by carbothermal reduction of electrospun PVP/TEOS composite fibers. Nanotechnology 18, 245606 (2007)Google Scholar
35.Zhou, J., Zhou, M., Chen, Z., Zhang, Z., Chen, C., Li, R., Gao, X., Xie, E.SiC nanotubes arrays fabricated by sputtering using electrospun PVP nanofiber as templates. Surf. Coat. Technol. 203, 3219 (2009)Google Scholar
36.Sasaki, Y., Nishina, Y., Sato, M., Okamura, K.Raman study of SiC fibers made from polycarbosilane. J. Mater. Sci. 22, 443 (1987)Google Scholar
37.Xi, G., Yu, S., Zhang, R., Zhang, M., Ma, D., Qian, Y.Crystalline silicon carbide nanoparticles encapsulated in branched wavelike carbon nanotubes: Synthesis and optical properties. J. Phys. Chem. B 109, 13200 (2005)Google Scholar
38.Shapiro, S.M., O'Shea, D.C., Cummins, H.Z.Raman scattering study of the alpha-beta phase transition in quartz. Phys. Rev. Lett. 19, 361 (1967)Google Scholar
39.Glinka, Y.D., Jaroniec, M.Spontaneous and stimulated Raman scattering from surface phonon modes in aggregated SiO2 nanoparticles. J. Phys. Chem. B 101, 8832 (1997)Google Scholar
40.Menga, A., Lia, Z., Zhang, J., Gao, L., Li, H.Synthesis and raman scattering of β-SiC/SiO2 core-shell nanowires. J. Cryst. Growth 308, 263 (2007)Google Scholar
41.Li, Z., Gao, W., Meng, A., Geng, Z., Gao, L.Large-scale synthesis and raman and photoluminescence properties of single crystalline β-SiC nanowires periodically wrapped by amorphous SiO2 nanospheres 2. J. Phys. Chem. C 113, 91 (2009)Google Scholar
42.Zhou, J.Y., Chen, Z.Y., Zhou, M., Gao, X.P., Xie, E.Q.SiC nanorods grown on electrospun nanofibers using Tb as catalyst: Fabrication, characterization, and photoluminescence properties. Nanoscale Res. Lett. 4, 814 (2009)CrossRefGoogle Scholar
43.Chen, Z., Wang, Y., Zou, Y., Wang, J., Li, Y., Zhang, H.Origin of the blue photoluminescence from SiO2(SiC)/SiC on Si substrate. Appl. Phys. Lett. 89, 141913 (2006)Google Scholar
44.Chen, Z., Wang, Y.X., He, H.P., Zou, Y.M., Wang, J.W., Li, Y.Mechanism of intense blue photoluminescence in silica wires. Solid State Commun. 135, 247 (2005)CrossRefGoogle Scholar
45.Skuja, L.Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: A luminescence study. J. Non-Cryst. Solids 149, 77 (1992)CrossRefGoogle Scholar
46.Yamashita, N., Hamada, T.Photoluminescence of the MgSO4:Tb3+, Na+ powder phosphor. Jpn. J. Appl. Phys. 28, 1326 (1999)Google Scholar
47.Zhou, L., Yan, B.Synthesis, microstructure and photoluminescence of Eu3+/Tb3+ activated Y2SiO5 nanophosphors by new silicate sources. Appl. Surf. Sci. 254, 1847 (2008)Google Scholar
48.Liu, X.M., Yao, K.F.Large-scale synthesis and photoluminescence properties of SiC/SiOx nanocables. Nanotechnology 16, 2932 (2005)Google Scholar
49.Gerstmann, U., Rauls, E., Sanna, S., Frauenheim, Th., Overhof, H.Co-doping of Er-doped SiC with oxygen—A promising way towards efficient 1540 nm emission at room temperature. Mater. Sci. Forum 475–479, 3681 (2006)Google Scholar
50.Fu, Z., Yan, B., Liu, R., Ruan, Y.Ultraviolet photoluminescence from 4H–SiC nanocrystalline films deposited on silicon substrate. J. Mater. Res. 17, 570 (2002)Google Scholar
51.Qin, G.G.Extended quantum confinement luminescence center model for photoluminescence from oxidized porous silicon and nanometer-Si-particle- or nanometer-Ge-particle-embedded silicon oxide films. Mater. Res. Bull. 33, 1857 (1998)Google Scholar