Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T05:33:50.644Z Has data issue: false hasContentIssue false

Synthesis, luminescence, and photocatalytic activity of KLa2Ti3O9.5:Er3+ nanocrystals for water decomposition to hydrogen

Published online by Cambridge University Press:  19 October 2012

Ying Li
Affiliation:
School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin, Heilongjiang 150080, China
Yang Qu
Affiliation:
School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin, Heilongjiang 150080, China
Guofeng Wang*
Affiliation:
School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin, Heilongjiang 150080, China
Kai Pan
Affiliation:
School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin, Heilongjiang 150080, China
Di Yu
Affiliation:
School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin, Heilongjiang 150080, China
Shuai Liu
Affiliation:
School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin, Heilongjiang 150080, China
Li Feng
Affiliation:
School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin, Heilongjiang 150080, China
Jingyu Cui
Affiliation:
School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin, Heilongjiang 150080, China
Liwei Ren
Affiliation:
School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin, Heilongjiang 150080, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

KLa2Ti3O9.5 and KLa2Ti3O9.5:Er3+ nanocrystals were successfully synthesized using a hydrothermal method and a subsequent calcination treatment. The band gap (Eg) of the KLa2Ti3O9.5 nanocrystals was calculated to be about 2.56 eV by means of the reflectance diffusion technique. Under 980-nm excitation, the KLa2Ti3O9.5:Er3+ nanocrystals emitted intense green (2H11/2/4S3/24I15/2) and red (4F9/24I15/2) upconversion (UC) luminescence. In comparison with pure KLa2Ti3O9.5, the KLa2Ti3O9.5:Er3+ nanocrystals exhibited a higher activity for water splitting into H2 under simulated solar light irradiation. We suggest that the enhancement of photocatalytic activity is related to the Brunauer-Emmett-Teller (BET) surface area and UC luminescence of KLa2Ti3O9.5:Er3+.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, G., Peng, Q., and Li, Y.: Lanthanide-doped nanocrystals: Synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 44, 322 (2011).CrossRefGoogle ScholarPubMed
El-Sayed, M.: Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257 (2001).CrossRefGoogle ScholarPubMed
Williams, F., Huang, S., Ming, Z., Kao, Y., Smith, G., Goldburt, E., Hodel, R., Kulkarni, B., Veliadis, J., and Bhargava, R.: X-ray excited luminescence and local structures in Tb-doped Y2O3 nanocrystals. J. Appl. Phys. 83, 5404 (1998).Google Scholar
Bai, X., Song, H., Pan, G., Lei, Y., Wang, T., Ren, X., Lu, S., Dong, B., Dai, Q., and Fan, L.: Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects. J. Phys. Chem. C 111, 13611 (2007).CrossRefGoogle Scholar
Kim, Y., Yang, Y., Ha, S., Cho, S., Kim, Y., Kim, H., Yang, H., and Kim, Y.: Mixed-ligand nanoparticles of chlorobenzenemethanethiol and n-octanethiol as chemical sensors. Sens. Actuators, B 106, 189 (2005).CrossRefGoogle Scholar
Bhargava, R., Gallaghar, D., Hong, X., and Nurmikko, A.: Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 72, 416 (1994).CrossRefGoogle ScholarPubMed
Wang, X. and Li, Y.: Synthesis and formation mechanism of manganese dioxides nanowires/nanorods. Chem. Eur. J. 9, 5627 (2003).CrossRefGoogle ScholarPubMed
Cao, M., Wang, Y., Qi, Y., Guo, C., and Hu, C.: Synthesis and characterization of MgF2 and KMgF3 nanorods. J. Solid State Chem. 177, 2205 (2004).CrossRefGoogle Scholar
Schwuger, M., Stickdom, K., and Schomacker, R.: Microemulsions in technical processes. Chem. Rev. 95, 849 (1995).CrossRefGoogle Scholar
Wang, L. and Li, Y.: Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem. Mater. 19, 727 (2007).CrossRefGoogle Scholar
Patra, A., Friend, C., Kapoor, R., and Prasad, N.: Upconversion in Er3+:ZrO2 nanocrystals. J. Phys. Chem. B 106, 1909 (2002).CrossRefGoogle Scholar
Tao, Y., Zhao, G., Zhang, W., and Xia, S.: Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors. Mater. Res. Bull. 32, 501 (1997).Google Scholar
Xia, Z. and Du, P.: Synthesis and upconversion luminescence properties of CaF2:Yb3+, Er3+ nanoparticles obtained from SBA-15 template. J. Mater. Res. 25, 2035 (2010).CrossRefGoogle Scholar
Wang, G., Qin, W., Zhang, J., Zhang, J., Zhang, J., Wang, Y., Cao, C., Wang, L., Wei, G., Zhu, P., and Kim, R.: Synthesis, growth mechanism, and tunable upconversion luminescence of Yb3+/Tm3+-codoped YF3 nanobundles. J. Phys. Chem. C 112, 12161 (2008).CrossRefGoogle Scholar
Wang, F., Han, Y., Lim, C., Lu, Y., Wang, J., Xu, J., Chen, H., Zhang, C., Hong, M., and Liu, X.: Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061 (2010).CrossRefGoogle ScholarPubMed
Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).CrossRefGoogle Scholar
Mao, S. and Chen, X.: Selected nanotechnologies for renewable energy applications. Int. J. Energy Res. 31, 619 (2007).CrossRefGoogle Scholar
Linsebigler, A., Lu, G., and Yates, J.: Photocatalysis on TiOn surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735 (1995).CrossRefGoogle Scholar
Hagfeldt, A. and Graetzel, M.: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49 (1995).CrossRefGoogle Scholar
Tian, M., Shangguan, W., Yuan, J., Jiang, L., Chen, M., Shi, J., Ouyang, Z., and Wang, S.: K4Ce2M10O30 (M = Ta, Nb) as visible light-driven photocatalysts for hydrogen evolution from water decomposition. Appl. Catal., A 309, 76 (2006).CrossRefGoogle Scholar
Maeda, K., Teramura, K., and Domen, K.: Development of cocatalysts for photocatalytic overall water splitting on (Gal-xZnx)(N1-xOx) solid solution. Catal. Surv. Asia 11, 145 (2007).CrossRefGoogle Scholar
Ikeda, S., Hara, M., Kondo, J., and Domen, K.: Preparation of K2La2Ti3O10 by polymerized complex method and photocatalytic decomposition of water. Chem. Mater. 10, 72 (1998).CrossRefGoogle Scholar
Gönen, Z., Paluchowski, D., Zavalij, P., Eichhorn, B., and Gopalakrishnan, J.: Reversible cation/anion extraction from K2La2Ti3O10: Formation of new layered titanates, KLa2Ti3O9.5 and La2Ti3O9. Inorg. Chem. 45, 8736 (2006).CrossRefGoogle ScholarPubMed
Kudo, A. and Sakata, T.: Luminescent properties of nondoped and rare earth metal ion-doped K2La2Ti3O10 with layered perovskite structures: Importance of the hole trap process. J. Phys. Chem. 99, 15963 (1995).CrossRefGoogle Scholar
Kudo, A., Tsuji, I., and Kato, H.: AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation. Chem. Commun. 17, 1958 (2002).CrossRefGoogle Scholar
Zhang, J., Shi, F., Chen, D., Gao, J., Huang, Z., Ding, X., and Tang, C.: Self-assembled 3-D architectures of BiOBr as a visible light-driven photo-catalyst. Chem. Mater. 20, 2937 (2008).CrossRefGoogle Scholar
Pollnau, M., Gamelin, D., Lüthi, S., and Güdel, H.: Power dependence of upconversion luminescence in lanthanide and transition–metal–ion systems. Phys. Rev. B 61, 3337 (2000).CrossRefGoogle Scholar
Fan, N., Chen, Y., Feng, Q., Wang, C., Pan, K., Zhou, W., Li, Y., Hou, H., and Wang, G.: Enhanced photocatalytic activity and upconversion luminescence of flower-like hierarchical Bi2MoO6 microspheres by Er3+ doping. J. Mater. Res. 27, 1 (2012).CrossRefGoogle Scholar
Zu, N., Yang, H., and Dai, Z.: Different processes responsible for blue pumped, ultraviolet and violet luminescence in high-concentrated Er3+:YAG and low-concentrated Er3+:YAP crystals. Phys. B 403, 174 (2008).CrossRefGoogle Scholar
Xu, H. and Jiang, Z.: Dynamics of visible-to-ultraviolet upconversion in YAlO3:1% Er3+. Chem. Phys. 287, 155 (2003).CrossRefGoogle Scholar
Yang, H., Dai, Z., and Sun, Z.: Upconversion luminescence and kinetics in Er3+:YAlO3 under 652.2 nm excitation. J. Lumin. 124, 207 (2007).CrossRefGoogle Scholar